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Summary 

 This thesis is motivated by the need for QoS in the current Internet. There are 

strong commercial reasons for network operators and equipment providers to offer QoS 

differentiation in IP networks. The main driving force so far has been the need for 

support of voice traffic over IP.  Existing and emerging multimedia applications and 

mission critical programs follow. DiffServ, for some years now, has been  –and will 

continue to be– the most promising framework for accomplishing commercial QoS 

because of its maturity and scalability.  However, several issues arise when trying to 

implement the architecture in the real world. Our work involves one of these issues: the 

co-existence of DiffServ with Ethernet devices. We have built a Linux testbed to study 

the impact of an Ethernet switch inside a DiffServ domain. The results of our 

experiments show that Ethernet switches should implement the same per-hop behaviors 

as the routers of a domain and thus should be incorporated in the DiffServ model. 

Otherwise, the domain will fail to provide the traffic services it intends to offer.  A 

framework is needed to describe how Ethernet switches should make use of DiffServ 

mechanisms. We propose a framework that is based on the use of VLANs. In our model, 

customers are grouped into VLANs and a traffic service is assigned to each VLAN. In 

this way, the layer-3 aggregative semantics of DiffServ are extended to layer 2 by the 

aggregative semantics of VLANs. The suggested framework seamlessly integrates 

Ethernet switches into the DiffServ architecture and provides a strong business model for 

QoS differentiation. 
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Chapter 1 

1  Introduction 

The objective of this work is to design and build an Internet domain that provides 

different traffic services that engineers are ready to implement, administrators are able to 

manage, and customers are willing to pay for.  That is, we intend to build an Internet 

network that provides quality of service (QoS) for applications and users that need it, in a 

simple and straightforward way that is both feasible to engineer and easy to administer, 

and at the same time is possible to scale at the size of the Internet. In reality, if not all of 

these conditions hold, the evolution of QoS in the Internet will not be possible. 

Our work was initiated by studying  the history of QoS in the Internet. This study 

concludes that the differentiated services architecture (DiffServ) is now the most 

promising and feasible approach: the standards that define it are mature enough, there are 

many algorithms that can realize its most challenging components, the Internet 

community has conducted much research on it, and there are many public and proprietary 

implementations and testbeds already developed. 

DiffServ was introduced as a feasible and adequate infrastructure to provide some 

kind of quality-of-service support in the current Internet. DiffServ enhances the Internet 

by adding more traffic services to the best-effort service. The best-effort service is 

expected to remain the dominant service, where enhanced services will take only a small 

fraction of the total traffic but will provide guarantees that applications and users will 

benefit from. The goal of DiffServ is twofold: to provide some kind of end-to-end QoS 
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and to achieve it in a scalable way where deployment will be fast and will grow as much 

as the best-effort service has. 

Moving from the current best-effort Internet to an Internet enhanced with more 

traffic services under the differentiated services architecture is a big step that is not 

without challenges, which is why DiffServ has not yet been commercially deployed. 

Several problems have restrained the deployment of DiffServ. Both engineering and 

administrative complexity are two main reasons. Even though the work of the last four 

years has led to many engineering evolutions, it is essential that a DiffServ framework be 

simple to administer and straightforward to commercialize. Moreover, for DiffServ to be 

successful, it has to be applicable to the existing networks. The Internet is comprised of 

many interconnected heterogeneous networks, consisting of devices that function in both 

layer 2 and layer 3. DiffServ does not take into account Ethernet switches or any other 

layer-2 devices, since it is defined for the IP layer protocol.  

 Intuitively, one can see that if the Ethernet switches inside a DiffServ domain do 

not support differentiated traffic service, there might be many scenarios where the 

anticipated performances do not hold. Traffic through an Ethernet switch should be 

conditioned, metered, and scheduled in an appropriate way for the domain to provide the 

guarantees it is supposed to. IEEE has published the 802.1p standard, which along with 

802.1Q defines an extra field in the Ethernet frame format and several Ethernet traffic 

classes that can be used to differentiate traffic in layer 2. This has been done in an effort 

to provide QoS in the Ethernet layer, but is not by any means integrated in the DiffServ 

model. 
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 We have created a DiffServ domain on a Linux testbed to study the effects of an 

Ethernet switch on the performance of the traffic services the domain offers. We will 

show how DiffServ becomes impossible when there is no QoS support in the switch and 

also when the switch employs IEEE 802.1p traffic conditioning. Furthermore, we will 

demonstrate the simplicity of integrating the switch in the differentiated services 

architecture by having it employ the same traffic control mechanisms as the DiffServ 

router. We will also show that a model for doing that is needed, and one will be proposed. 

The model proposed is based on the use of virtual LANs (VLANs) for grouping users / 

customers with similar QoS needs. It aims to make a clear and simple target market for 

differentiated services and to integrate seamlessly the layer-2 devices of a domain in the 

DiffServ framework. 

  At this point, a comment should be made about bridging and switching. 

Technically, a “bridge” is a device that interconnects networks of different physical 

mediums. It may or may not perform switching. In practice, though, there is no 

distinction between the terms “bridge” and “switch,” which are used interchangeably in 

the literature and throughout this document. IEEE, for example, has adopted the term 

“transparent bridge” to describe what some people might refer to as an Ethernet switch. 

The next chapter summarizes the research on the history of QoS in the Internet for 

the purposes of this work.  It describes the major issues involved with QoS in the 

Internet, identifies the solutions that have been proposed over recent years, and explains 

the advantages and disadvantages of the differentiated services architecture. This is 

followed by a description of how the framework is defined and how it is designed to 

work.  Chapter 3 discusses the testbed that has been built, provides an overview of the 
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basic Linux traffic control components, and describes the services these components have 

built up in our testbed. The experiments performed on the testbed, which will analyze the 

impact of the Ethernet switch in the domain, are presented in Chapter 4, and Chapter 5 

discusses the suggested framework for integrating layer-2 QoS in the differentiated 

services architecture using VLANs. Finally, Chapter 6 concludes the thesis. Appendix A 

provides the details on the software provisioning of our testbed, Appendix B describes 

how VLAN switching can be implemented in Linux, and Appendix C lists and describes 

the traffic control scripts used in our work. Appendix D discusses the automation 

procedure for performing experiments and lists the corresponding scripts.   
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Chapter 2 

2  Background 

 During the last two decades, the Internet has experienced amazing growth. 

Millions of hosts and thousands of networks have been interconnected to form a global 

network where communication is cheap, fast, and simple. It has been the simplicity and 

scalability of the Internet protocol (IP) and other Internet-related protocols that have 

made this exponential growth possible. The end-to-end argument [1], which dictates that 

all complexity has to be pushed into the network edges and that the core network has to 

be kept as simple as possible, has been vastly adopted by the Internet community and has 

made the global deployment of the Internet a reality. 

 The success of the end-to-end argument does come with a price, however. This 

model makes it extremely difficult to deploy new network and traffic services, services 

that require support from the core network. The core network functionality has been 

designed to be fast and optimized, greatly lacking the ability for changing and upgrading. 

Many network services have been envisioned that would make new applications a reality, 

but have stumbled with the current Internet model: for a new network service to be 

deployed, the entire core network has to be upgraded. Things are even harder when the 

new service introduced is sophisticated or ambiguous. Experimental services are virtually 

impossible, which is also why the active networks model has been envisioned [2].  

 Broadcasting, multicasting, explicit congestion notification, quality of service, 

distributed computing, and virtual-line emulation are some of the main examples of 
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network services that have been greatly studied, but have not yet been realized because of 

the need for huge core network upgrades. It is possible, however, that this upgrade will be 

realized for a network service that is worth deploying. This service should be well 

defined, engineering mature, easily administrated, and, most important, should have a 

clear target market that would compensate for the cost of deployment.  

 Quality of service has been a big chapter in the book of new Internet services. As 

soon as the global data network (which the Internet has become) became a reality, the 

telecommunications community dreamed of the integration of voice network (telephony) 

and data network (Internet). Voice is a real-time application that has to meet several 

deadlines and requires several guarantees that the best-effort packet delivery service of 

the current Internet cannot support. Moreover, there are several real-time applications 

that could be deployed in the Internet such as video conferencing, video on demand, or 

time-sensitive applications such as medical and military applications. All of these new 

applications have motivated university researchers, industry, and the Internet community 

to look for models that would enhance the Internet with quality-of-service support. 

 The Internet Engineering Task Force (IETF) has played a primary role in the 

effort to build a mechanism that would provide quality of service for the Internet. In the 

early `90s,  the Integrated Services Working Group was developed, and the Integrated 

Services Standard was issued, which along with the Resource ReSerVation Protocol 

(RSVP), defined a model where an application can issue requests for specific traffic 

guarantees it requires from the network. The model’s components ensure that the 

requirements will be satisfied, making the corresponding reservations along the path of 

the application’s connection. In this way, the network provides every connection the 
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service it requires and every application can use any kind of connection it desires, which 

leads to fine-grained QoS for network applications. 

 Integrated services and RSVP have been described as the most complicated 

network protocols. However, complexity is not the main disadvantage of this approach. 

The primary problem with integrated services is scalability. It was soon acknowledged 

that there are too many connections for a router to keep state for. This approach was 

largely contrary to the end-to-end argument that pushes complexity and state information 

to the edges. The need for a scalable solution to the quality-of-service problem was 

embraced by the IETF, which brought together the Differentiated Services Working 

Group [5]. The group published in 1998 the differentiated services architecture [6], which 

became an Internet standard along with many more Internet drafts and RFCs that 

supported the newly introduced model [8], [9].  

 This new scheme was embraced by the Internet community, even though it did 

not guarantee micro-flow QoS, since it promised flexibility and scalability. The 

Differentiated Services Working Group put all its efforts into designing a standard that 

would set the guidelines for QoS in the Internet, but that would still leave an open field 

for work and study. That is why the architecture is very open, modular, and extensible. 

As a matter of fact, the group has been accused of having held back the DiffServ 

deployment by being too liberal [27].  

 In the differentiated services architecture, traffic is monitored and classified in the 

edge routers. An edge router is the first router a packet will go through along its path to 

its destination. Classification results in a service indication marked in the packet in the IP 

header. In particular, the former TOS field of the IPv4 header and the former traffic class 
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field of the IPv6 header are used; both have been renamed to “DS field.” Consecutive 

routers along the path of a packet will use this service indication to assign a prearranged 

hop behavior to that packet. This per-hop behavior, along with the rules and policies set 

in a DiffServ domain, defines the service that a particular flow will receive.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1. DiffServ domains and SLAs. 
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of providing traffic services along with setting rules and policies. A DiffServ domain 

authority has to make bilateral agreements, which are called service-level agreements 

(SLA), with the authorities of adjacent domains to extend traffic services over the 

domains’ boundaries. The division in DiffServ domains is essential for the gradual 

deployment of differentiated services in the Internet and the agreements are essential for 

the eventual end-to-end QoS support. 

 The differentiated services architecture does not define any traffic services. It only 

describes how various components will work together to provide the services. One major 

component in this framework is the per-hop behaviors (PHBs). A PHB describes what a 

router will do with a packet. The PHBs have to be standardized and the IETF has already 

standardized a few of them. However, the standardization does not restrict or describe the 

implementation of these behaviors. There are many published algorithms that may be 

used in different ways to provide the same functionality and it is up to the manufacturer 

to decide which to use.  

 PHBs are used as the building blocks to create traffic services, and since IETF 

does not define any traffic services, academia and industry do so. Four traffic services are 

of interest in this work: premium, assured, olympic, and best effort. All are based on 

standardized PHBs and are probably the most popular DiffServ traffic services in the 

research community. The next chapter presents these services in detail. Finally, it is 

worth mentioning one more interesting and promising service, the alternative best-effort 

(ABE) service [13]. It is a best-effort service that requires no additional charging or usage 

control where applications choose between receiving a lower end-to-end delay and 

receiving more overall throughput. 
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 Recapitulating, in the differentiated services architecture, administrations of 

DiffServ domains offer different traffic services to the users of their domains and have to 

make agreements with adjacent domains to extend these services. The traffic service 

could be assigned to a user’s host computer, to a particular connection, to a set of 

computers, to a LAN, or to anything else that could make sense. Differentiated services is 

a challenging framework to implement and deploy. Furthermore, the definition of the 

traffic services offered inside this framework is even more challenging because it is the 

value and the importance of the service with respect to the view of the end user that will 

assess the whole architecture. DiffServ is still a work in progress that is constantly being 

evaluated [16], [17], [18] and ratified [9]. 
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Chapter 3 

3  Testbed 

3.1 Overview 

The role of the testbed is threefold. First, it is used to illustrate the troubling issues 

with the introduction of Ethernet switches into a DiffServ network and at the same time 

to present the simplicity of the resolution given to the problem. Second, it implements 

and presents the suggested framework for the formal integration of the Ethernet switches 

in the DiffServ model, proving its feasibility. Third, its realization constitutes the primary 

source of understanding, motivation, and insight for our work. 

The testbed consists of six identical personal computers: Pentium III at 450MHz 

with 256MB of physical memory and 6.8 GB removable hard drives. All network cards 

are Intel’s eepro100 and all machines run RedHat 7.3, based on Linux-2.4.18- kernel. The 

kernels of the machines that act as the switch and router were recompiled to add 

additional features and change configuration. All links are forced at 10Mbps half duplex 

and all systems run an ssh server. The sources and the sink are provisioned with the 

altered iperf program, which we will discuss later on. The vconfig program is installed on 

both the switch and the router to control the VLAN tagging support, whereas the 

bridge_utils package is installed only on the switch and controls the bridging kernel 

functions. The iproute2 package, which contains the tc program that controls the kernel 

traffic control mechanisms, is installed on both machines as well, along with the tc 
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patches taken from the tcng package. Finally, two patches for kernel files need to be 

applied.  

As mentioned above, the switch and the router kernels need to be recompiled. The 

appropriate selections in the Linux kernel configuration dialog need to be made to 

include traffic control and DiffServ capabilities. Details about what has been mentioned 

so far and of what will follow can be found in Appendix A, which also discusses the 

modifications made to the iperf program. The iperf program is essential to our testbed. It 

runs in two modes, a client and a server. A client generates a UDP flow and the server 

reports statistics for the received traffic on that flow. The program had to be slightly 

modified to accommodate an automated procedure of running experiments and collecting 

data.  

In the next chapter, we show graphs of measurements that show throughput and 

packet loss percentage over values of generated traffic. These graphs are created with the 

integration of the measurements made for different values of generated traffic. In 

particular, measurements were made in steps of 0.5 Mbps of generated traffic. The 

number of steps in a graph may be up to nine, and every step lasts as long as 30 seconds. 

The measurement made in a step is the average throughput, or packet loss percentage, 

over a timescale of 30 seconds. Throughput and packet loss do not yield different values 

over time for steady generated traffic. This is expected; traffic service behavior of the 

domain is not supposed to change over time. The window of 30 seconds is used to 

accommodate errors injected by nonabsolute synchronous generation of traffic. The 

copious number of experiments and cases that needed to be examined in this work 

demanded automation of this procedure. The automation made it possible to run a single 
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experiment in a keystroke, where the results are presented both on the screen on the fly 

using xgraph and in excel files for further processing. Appendix D provides more 

information about the automation procedure, which is based on the expect package  –a tcl 

interpreter, along with the scripts created for our work 

The next paragraph talks about the DiffServ mechanisms inside the Linux kernel 

and gives an overview of the most important elements. The last paragraph of this chapter 

describes the traffic services built by these mechanisms.  

 

3.2 DiffServ in Linux 

Linux kernels offer a variety of traffic control mechanisms that can be used in a 

modular way to implement service differentiation in accordance with the DiffServ model. 

Several traffic control elements may be used together to provide the desired functionality. 

Some of these elements are specific to the differentiated services architecture, but most of 

them can be used in many other contexts. This section gives a brief overview of the 

Linux traffic control structure and its elements. How these mechanisms were used to 

provide DiffServ functionality for our experiments is discussed in the next chapter, and 

the scripts that configure this functionality can be found in Appendix C. General 

information about traffic control in Linux can be found in [22] and [23], whereas 

DiffServ-specific information about Linux can be found in [24] and [25]. 

 Figure 3.1 shows the major conceptual blocks that comprise the path a packet 

follows inside the Linux kernel. Incoming packets are either passed to a higher layer to be 

processed by the local host, or they are handed out to the “Forwarding” block. The main 

role of this block is to select an output network interface to transmit the packet. Upon 
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decision, the packet is queued to the respective interface. This is where traffic control 

kicks off. Even though traffic control functions can and actually are sometimes 

implemented in the ingress interface, there are not many things one can do with traffic at 

the ingress interface, mainly marking and policing. On the other hand, traffic control at 

the egress interface may form all kinds of desired behavior for traffic. It all depends on 

the queuing scheme used in the output interface. When the “Forwarding” block queues a 

packet on an interface, the queuing scheme may decide to put the packet at the end or at 

the beginning of a FIFO queue, drop it, or just do anything else meaningful. 

 

 

 

 

 

Figure 3.1. Linux kernel path for packets. 

 

 Linux provides a modular structure to use different queuing schemes that offers 

great flexibility and control over traffic [23]. Furthermore, many published algorithms for 

traffic control have been implemented for Linux and are part of recent Linux kernels. In 

Linux, a queuing scheme is named a qdisc  (queuing discipline) and, along with the 

classifiers, the filters and the meters (for policing) provide all the necessary functionality 

for implementing differentiated services.  

 Each network interface (network device) has a qdisc associated with it, called the 

root qdisc. The simplest qdisc available is a FIFO queuing scheme where packets 

originating from the forwarding process enter the tail of the queue and the device 
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transmits packets from the head of the queue as fast as it can. More sophisticated qdiscs 

have classes (classful). Classes are used for service differentiation, where any packet can 

be assigned to any class and packets from different classes can receive different services. 

The mapping of packets to classes is done by the use of filters and the service 

differentiation is done by assigning different queuing disciplines to classes or by 

assigning different priorities to classes. This is probably the most powerful feature of the 

traffic control in Linux kernels: a class can be associated with any available qdisc that in 

turn can consist of more classes, which may also have qdiscs associated with them and so 

on. An example of this functionality is shown in the following figure, where only the 

outer qdisc contains classes; the inner are classless qdiscs. 

 

 

 

 

 

 

 

 

 

Figure 3.2. A simple queuing discipline with multiple classes. 

 

 When the forwarding process hands out a packet to an interface, it performs the 

enqueue function on it. The outer (root) qdisc is responsible for figuring out what class 

the packet belongs to (if any) and handing the packet out to the qdisc that will hold it. 
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When the device is ready to send a packet, it performs the dequeue operation on the outer 

qdisc. The outer qdisc needs to decide on which of its inner qdiscs it will perform the 

dequeue operation. Finally, a qdisc is chosen and a packet in that qdisc is selected and 

then transmitted over the link.  

It is clear that using this structure and having at one’s disposal several queuing 

disciplines, classes, and filters, it is possible to create many different traffic control 

schemes. DiffServ is one of them and there is indeed more than one way to combine and 

use the available components to implement the same desired behavior. In the following 

section, the major components used in our testbed are briefly described.  

 

• dsmark qdisc. This is the only qdisc specific to the differentiated services architecture 

[25]. It is used only as a root qdisc and its role is twofold. First, it extracts the DSCP from 

the packet and records it in the packet’s buffer descriptor in the tcindex field. This is later 

examined by the tcindex classifier. Second, it sets the DS field of outgoing packets. This 

marking is done when a packet is dequeued from the dsmark qdisc; the qdisc uses the 

tcindex field of the packet’s buffer descriptor as an index to a table in which the outbound 

DSCP is stored and puts this value into the packet’s DS field. 

 
• tcindex classifier. A classifier, in general, is used to classify a packet to a certain class 

of a given qdisc, making use of filters. The filters can use almost any field of the packet 

to decide on what the classification result will be. The tcindex is different from regular 

classifiers, such as the rsvp and the u32, in that it uses the tcindex field of the buffer 

descriptor of the packet to make the classification. Also, the tcindex classifier may make 

use of a meter to police traffic. 
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• CBQ qdisc. Class-based queuing is a classful qdisc that implements a rich link-

sharing hierarchy of classes [19]. The desired result is the sharing of available bandwidth 

by different classes of traffic, where each class gets a predefined proportion of the 

available bandwidth. This definition suggests that classes might contain more classes, 

where the bandwidth reserved for the parent class could be shared between its children 

classes. The way this is implemented in Linux is as follows: when a packet is enqueued 

in a CBQ qdisc, the filters associated with the root class of the qdisc is used to assign the 

packet to a class. Then, the packet is enqueued to that class, which may contain any 

available qdisc. If that qdisc is again a CBQ qdisc, the process starts over until the packet 

is enqueued to a leaf class, a class that has no children. When the device is ready to send 

a packet, the dequeue operation is performed on the root CBQ qdisc. The qdisc inquires 

its classes to give a packet for transmission. This is done in a weighted round robin 

fashion, where classes are assigned priorities and weights. The WRR process starts by 

asking the highest priority classes for packets and continues to do so until they have no 

more data to offer, in which case the process repeats for lower priorities. Each class, 

when asked by the WRR process, decides on whether it should give a packet for 

transmission or not. This depends on whether or not it exceeds its assigned proportion of 

the bandwidth. The algorithm calculates this by measuring the effective idle time of the 

link and in particular using an exponential weighted moving average (EWMA), which 

considers recent packets to be exponentially more important than past ones. When 

shaping a 10 Mbps link to 1 Mbps, the link will be idle 90% of the time. If it is not, it 

needs to be throttled so that it is idle 90% of the time. Based on that principle, each class 
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compares its calculated idle time to the EWMA measured one and decides whether or not 

to send a packet.  

 

• sch_gred qdisc. This qdisc was created to support the assured forwarding PHB for the 

differentiated services architecture; nevertheless its scope and use is not limited to that. It 

is a multi-RED implementation called generalized RED (GRED). Cisco’s DWRED and 

RIO are special cases of GRED. It employs sixteen (16) virtual queues (VQs) and uses 

the last four digits of the tcindex field of the buffer descriptor of the packet to assign the 

packet to the right VQ. A distinct RED algorithm is employed for every VQ separately, 

and packets that have entered a VQ will either enter the physical queue or get dropped, as 

the RED algorithm of their VQ will decide. The GRED qdisc is a very flexible 

mechanism, since it allows the user to manually configure the RED parameters for every 

VQ or may even generate these values automatically by having the user define different 

priorities among the VQs. 

 

• prio qdisc. This qdisc is used for strict prioritizing. It consists of classes, called bands, 

and a priority is assigned to every band. The qdisc makes sure that bands with higher 

priority will always be served first and bands with lower priorities will be served only 

when higher ones do not have any packets available. 

 

• ingress qdisc. As the name implies, this qdisc is used for ingress interfaces. It is a 

very specialized qdisc and acts as a template for holding filters and policing mechanisms 

(policers).  
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3.3 Traffic services 

The mechanisms presented in the last paragraph constitute building blocks useful 

for creating a number of traffic services. For the purposes of our work, we use these 

mechanisms to provision the testbed with four traffic services: premium, assured, 

olympic, and best-effort service. In the rest of this chapter, the services are described. The 

next chapter discusses the use of the services and shows results. Appendix C presents the 

scripts used to set up the services in a Linux machine. 

Best-effort service is the one the Internet currently provides. In this model, 

packets compete equally for network resources; the network provides no guarantees and 

thus no predictability or reliability in end-to-end packet delivery. Premium, assured, and 

olympic service all provide service guarantees that applications or users may benefit 

from. They are the services most commonly studied for the differentiated services 

architecture. These services are not strictly defined and may have many variations. 

Nevertheless, the basic building blocks that implement the services, the per-hop-

behaviors (PHBs), are well defined and standardized. These PHBs constitute the core of 

DiffServ functionality inside the domain. The experiments in the next chapter show that 

only when every network node (i.e., switch and router) inside a DiffServ domain 

implements the same PHBs will a service based in these blocks be properly offered end 

to end (throughout the boundaries of the domain). There may be other services, based on 

different PHBs, that do not have this requirement. It will be shown, however, that for at 

least the services discussed in this work, which are the more mature and popular among 

the proposed DiffServ services, the suggested argument does hold. 
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Premium service was introduced by Van Jacobson in [7] and is also known as a 

virtual leased line. It is a peak-limited, extremely low-delay service, resembling a leased 

line. Traffic belonging to it is classified at the network edge, where it is shaped or policed 

at a preconfigured peak rate and is given its own high-priority queue in routers. Premium 

service is strictly not oversubscribed. Typically, mission and time-critical applications 

require this service. It is expected that in real networks, only a small percentage of the 

total network capacity would be allocated to the premium service.  

The mechanism that realizes this service is the expedited forwarding (EF) PHB. 

Expedited forwarding provides a basic building block for low-loss, low-delay, and low- 

jitter services and is based on the idea that, since propagation delays are a fixed property 

of the topology, delay and jitter are minimized when queuing delays are minimized. The 

definition of the behavior is that the rate at which EF traffic is served at a given output 

interface should be at least the configured rate, over a suitably defined interval, 

independent of the offered load of non-EF traffic to that interface. EF was first defined in 

[10], which failed to formalize the definition in a correct mathematical manner and thus 

was replaced by [11]; [12] describes in further detail the reasons for that. 

There is a category of services, called better-than-best-effort services. This 

consists of services aimed at applications that require a better reliability than the best-

effort service, without having as strict requirements as those the premium service 

satisfies. The first such service that appeared is the assured service, which provides an 

assured subscribed bandwidth for its traffic. Traffic that does not exceed this rate is 

serviced with a high level of assurance. Traffic that exceeds this limit, however, is 

serviced with a lower level of assurance.  
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Assured service was first proposed in [13] by Clark. In this model, a service 

profile is defined for every user and in case of congestion, the network favors traffic that 

is within those service profiles. The traffic is monitored as it enters the network and the 

edge node tags packets as being “in” or “out” of their service profile. Then, at each 

router, if congestion occurs, preferentially, traffic that is tagged as “out” is dropped. This 

model may be implemented by a RIO (RED In Out) scheme [21]. RIO is based on the 

random early detect (RED) [20] differentiated dropping of packets during congestion at a 

router. In RIO, two sets of RED thresholds are maintained; one for packets tagged as ‘in’ 

and one for packets tagged as “out,” but both types of packets utilize the same queue. 

Two separate average occupancy calculations are performed, one for in-profile packets 

and one for in-profile plus out-of-profile packets. The buffer occupancy of the in-profile 

packets determines the possibility of dropping an in-profile packet, and the buffer 

occupancy of the in-profile plus out-of-profile packets determines the possibility of 

dropping an out-of-profile packet.  

Assured service is just an example of a service that can be better than the best- 

effort service. It is also just an example of what the assured forwarding (AF) PHB group 

[14] may realize. AF is a powerful and general building block for providing different 

levels of forwarding assurances inside a DiffServ domain for different classes of traffic. It 

defines four classes of AF traffic, where each one uses reserved independent network 

resources. Within each class, three levels of drop precedence are defined. In case of 

congestion within an AF class, the drop precedence of a packet determines the relative 

importance of the packet within that class and thus the possibility of it being dropped.  
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AF, by controlling the drop preference of packets at the time of congestion, may 

provide a variety of better-than-best-effort services. One is the service suggested by the 

assured model. One other is the olympic service suggested in [14]: three classes of traffic 

share the same resources, the gold, the silver, and the bronze medal class. Traffic is 

assigned to a class and tagged in the edges and in case of congestion at any router, 

packets will be dropped preferentially that belong to lower medals (classes). Traffic that 

belongs to the gold medal is guaranteed a higher level of forwarding assurance than 

traffic belonging to the silver class, which in turn has higher assurances than the bronze 

class. 

Having introduced the basic features of our testbed, the next chapter looks into the 

topologies studied, the experiments performed, and the results taken and motivates us to 

design a model that integrates Ethernet switches inside the differentiated architecture. 

 

 

 

 
 
 
 
 
 
 
 
 



 

23 

Chapter 4 

4  Experiments 

4.1  Overview  

 The experiments performed aim to illustrate the impact of an Ethernet switch 

inside a DiffServ domain. The impact is measured by the performance of the traffic 

services the domain provides. Our objective is obvious: we need a domain where the 

semantics of the traffic services it offers are met independently of the existence or 

nonexistence of layer-2 devices in the domain. We conclude that the effects of the switch 

can be significant and argue the importance of maintaining the intended QoS semantics.   

The Linux testbed will be customized to different topologies and configurations 

of a DiffServ domain. We define and study four different cases of topologies and 

configurations. In the first case, the testbed is configured to implement a minimal 

DiffServ domain that provides four DiffServ traffic services.  The performance the traffic 

services provide is measured and is compared to the results taken from the subsequent 

cases. In the second case, an Ethernet switch is introduced in the domain that provides no 

traffic differentiation. In the next case, the switch performs minimal QoS support and in 

the last case, the switch supports the same per-hop-behaviors as the router in the domain 

does. It will be shown that, when an Ethernet switch is present in the domain, only in the 

last case do the semantics of the traffic services hold. We argue that it is both important 

and feasible to integrate Ethernet switches in the DiffServ architecture by having them 

employ the same per-hop-behaviors the layer-3 devices do in a DiffServ domain. In the 

next chapter, we introduce a framework that realizes this integration. 
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In all the cases presented below, the performance the traffic services provide is 

measured. This performance is defined as the externally observable behavior 

demonstrated by a traffic flow assigned to the particular service. For the purposes of this 

work, this behavior is measured by the performance a UDP flow assigned to a particular 

traffic service experiences throughout the boundaries of the domain. The performance of 

the UDP flow is measured in terms of throughput and packet loss. In all the experiments 

described in this document, three UDP flows are generated simultaneously. UDP flows 

were used to avoid taking into account the TCP congestion control mechanism and to be 

able to measure packet loss. The flows use a constant packet size of 1000 bytes, chosen 

as the average packet size in the Internet. The combinations of different number, type, 

and profile of flows generated, along with the different provisioning schemes possible, 

are copious and could not all have been studied in our testbed. Besides, it is unnecessary. 

The examples presented in this work are adequate to illustrate that the presence of an 

Ethernet switch inside a DiffServ domain can significantly alter the desired traffic service 

semantics. 

 

4.2  Case 1: DiffServ domain with one DiffServ-aware router 

The first case to be examined is that of a minimal DiffServ domain, a domain with 

one DiffServ-aware router and no Ethernet switches. Four hosts are connected to the 

router. Three hosts act as the sources of three simultaneous traffic flows, each  assigned 

to a different traffic service, and a fourth host is the destination of all sources, where our 

measurements are made. The router supports both EF and AF PHBs and thus is able to 

provide all four traffic services mentioned in this document: premium, assured, olympic, 
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and best-effort. The flows have to compete for bandwidth on the bottleneck link (10 

Mbps), the link between the router and the destination host. 

The topology of this case as implemented in our Linux testbed is shown in Figure 

4.1. In the first two experiments, premium traffic is generated from one source host 

destined to the receiver’s port number 6001, assured traffic is generated from the second 

source host destined to the receiver’s port number 6002, and best-effort traffic is 

generated from the third source host and is destined to the receiver’s port number 6003.  

 

 

 

 

 

 

 

 

 

 

 

  

 Packets with a destination port of 6001 that do not exceed the subscribed service 

profile of 3 Mbps are tagged at the ingress interface of the router as belonging to the EF 

PHB (0x2e DSCP). If they exceed the subscribed profile, they are dropped. Assured 

traffic is also monitored; the ingress interface of the router marks traffic with the AF11 
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Figure 4.1. Case 1 topology. 
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code point (0x0a) as long as it conforms to the service profile of 3 Mbps. The interface 

marks it with the AF12 code point (0x0c) when it exceeds the limit. Best-effort traffic is 

also tagged with the same code point, AF12. In this way, in-profile assured traffic is 

treated preferentially to out-of-profile assured traffic, which will experience the same 

service as the best-effort traffic. Table 4.1 lists these mappings. 

 

 

Table 4.1. Service mappings for first and second experiments. 

Source Dest Port Profile Service Assigned PHB DSCP 
< 3Mbps Premium EF  0x2e Source1 

192.168.1.10 
6001 

> 3Mbps dropped - - 
< 3Mbps Assured AF11 0x0a Source2 

192.168.2.10 
6002 

> 3Mbps Best-effort AF12 0x0c 
Source3 

192.168.3.10 
6003  Best-effort AF12 0x0c 

 

 

 A CBQ queuing discipline is attached to the egress interface of the router. Two 

classes are created within the queuing discipline, one for EF traffic and one for AF and 

best effort. The filters classify traffic according to the DSCP value set by the ingress 

interfaces. The EF class consists of one FIFO queue, is given the highest priority among 

the different CBQ classes, and reserves a bandwidth of 3 Mbps. The AF class consists of 

a generalized RED (GRED) queuing discipline (qdisc). GRED is based on the RIO 

framework, but provides more flexibility. Multiple levels of drop precedence can be 

defined for differently tagged packets inside the same queue. Particularly, one GRED 

qdisc can implement one AF class, where the drop precedence encoded in the DSCP of 

the packet defines the drop probability for the packet in the GRED algorithm. More CBQ 
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classes may be used for implementing more AF classes, with a GRED qdisc attached to 

each of them. For simplicity, we are using only one AF class. The filters attached to the 

AF CBQ class assign packets to one of two drop preferences. AF11 packets (in-profile 

assured traffic) are assigned to the lowest drop precedence; AF12 packets (out-of-profile 

and best-effort traffic) are assigned to the highest drop precedence. In this way, assured 

and best-effort share the same network resources (bandwidth and buffer space), but in 

case of congestion, in-profile assured packets will have a greater probability of being 

forwarded. Finally, the egress interface of the router also marks outgoing packets with the 

corresponding DSCP value.  

The throughput results for generated premium traffic at a constant rate of 3 Mbps, 

assured traffic at a constant rate of 5 Mbps, and best-effort traffic varying between 1 and 

5 Mbps are shown in Figure 4.2. It is shown that the premium traffic is guaranteed a 3 

Mbps throughput regardless of the traffic generated for any other service. The x-axis 

measures the generated throughput of the best-effort traffic. Near the point where the 

generated best-effort traffic reaches 1.5 Mbps, congestion starts to occur and for all 

values of generated best-effort traffic greater than that, congestion exists. Figure 4.2 

shows for all those values how assured traffic experiences more throughput than the best-

effort traffic. Characteristic are the results for the point where both assured and best-

effort traffic are generated at the same rate (5 Mbps). The right-most values of the graph 

show 3.8 Mbps throughput for the assured traffic and 2.8 Mbps throughput for the best-

effort traffic. It is clear that in case of congestion, assured traffic is treated preferentially 

to best-effort traffic. Figure 4.3 is more illustrative of how assured experiences better 

performance than best effort; it depicts the per-flow percentage of packet loss over the 
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same set of values for generated best-effort traffic. In case of congestion, best-effort 

traffic experiences always greater packet loss than assured traffic, which is the effect of 

the RED algorithms: best-effort marked packets are dropped more aggressively than 

assured marked packets. Premium traffic conforms to the service profile and thus 

experiences no packet loss. 
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Figure 4.2. Throughput results for first experiment of case 1. 

 
 

Figure 4.4 depicts the throughput results of the second experiment: premium 

traffic is generated at 5 Mbps, assured is generated at 3 Mbps, and best-effort varies 

between 1 and 5 Mbps. In this case, premium traffic does not receive the generated 

throughput since it is policed, and the exceeding traffic is dropped at the ingress interface 

of the router, though the reserved bandwidth is still provided during times of congestion, 
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which occurs when generated best-effort traffic reaches 3.5 Mbps. From that point on, 

neither assured nor best-effort traffic receives its generated throughput, though the 
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Figure 4.3. Percentage of packet loss for first experiment of case 1. 

 
 
assured traffic experiences better service than best effort. Let’s take for example the point 

where best-effort-generated traffic reaches 5 Mbps. Assured traffic is slighted affected by 

dropping at about 2.8 Mbps out of the generated 3 Mbps of throughput. Best-effort 

traffic, though, drops at 3.7 Mbps out of the generated 5 Mbps of throughput. Assured 

traffic experienced a 6.7% drop in throughput, whereas best-effort traffic experienced a 

26% drop. The ratio between the two generated rates, 5 Mbps for the best effort and 3 

Mbps for the assured, yields 1.67. The ratio for the measured performance drop, 26% for 
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the best-effort and 6.7% for the assured, yields 3.8, which is greater than 1.67; thus, the 

assured service provided a better service than the best-effort one. 

Figure 4.5 depicts the percentage packet loss for the same flows. Premium traffic 

experiences steady packet loss of 40%, which is the excess traffic dropped by the 

policing mechanism of the router. Assured and best-effort traffic experience packet loss 

only in times of congestion, which is for all values where generated best-effort 

throughput exceeds 3.5 Mbps, and best-effort traffic always experiences greater packet 

loss than assured does. It is worth comparing the curves of the assured traffic in Figures 

4.3 and 4.5. The slope in the first one is greater, which means that assured traffic is 

dropped more aggressively. This is because, in the first case, assured exceeds the service 

profile, whereas in the second it does not.  
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Figure 4.4. Throughput results for second experiment of case 1. 
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Figure 4.5. Percentage of packet loss for second experiment of case 1. 

 
 

Both of these experiments demonstrate how the semantics of the premium and the 

assured service are met in the domain. Premium always gets its subscribed throughput. 

Moreover, it is expected that it experiences low delay and jitter. These metrics are not 

measured in our testbed because they would only be indicative of the service 

performance of the premium service. Throughput and packet loss are indicative for all the 

services studied and are considered to be adequate to describe the service results for the 

purposes of our work. Next, assured service is also successfully provided, because when 

traffic is kept within the service profile, it will lose only packets with low probability; 

otherwise, exceeding traffic will be forwarded with less assurance. In the results shown in 

Figure 4.4, low probability means that in-profile assured traffic will experience little 
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throughput loss in case of congestion. Moreover, the packet loss will be less than the one 

experienced by best-effort traffic (Figures 4.3 and 4.5).  

This loose definition of low probability, which determines how assured the 

assured service is, does not make the assured service less useful. On the contrary, this 

lack of state information that would need to be configured and propagated throughout the 

network as well as the fact that different implementations and variations can co-exist are 

what make assured service and most better-than-best-effort services very appealing. Such 

services can be much more easily and rapidly implemented, vastly deployed, and, 

eventually, brought to use and market. 

For the third experiment, the configuration of the domain has to change to provide 

another better-than-best-effort service: the olympic service. A gold, a silver, and a bronze 

flow are generated simultaneously. Table 4.2 lists the service mappings for this 

experiment. All flows generate the same throughput, which varies between 1 and 4 Mbps. 

Figure 4.6 shows the throughput performance of the three flows in relation to the 

individual generated rate. Figure 4.7 shows the percentage of packet loss for every flow 

for the same values of generated traffic. The same conclusions are derived from both 

figures. The flow assigned to the gold medal service experiences better performance than 

the flow assigned to the silver medal service. The silver medal traffic, in turn, 

experiences better performance than the bronze medal traffic. Both figures show that 

where congestion occurs, at about 3.2 Mbps of generated traffic for every flow, all flows 

start experiencing less than generated throughput and packet loss. Higher medal traffic 

always experiences better performance than lower medal traffic: higher throughput and 

less packet loss. The relative performance of two flows, ratio of throughput and ratio of 
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packet loss, is a system parameter that can be adjusted to yield the desired level of 

forwarding assurance for every level of traffic service. 

 

Table 4.2. Service mappings for third experiment. 

Source Dest Port Profile Service Assigned PHB DSCP 
Source1 6001 None Gold AF11 0x0a 
Source2 6002 None Silver AF12 0x0c 
Source3 6003 None Bronze AF13 0x0e 

 

 There is no reason for a domain providing only the olympic service. One AF class 

can be reserved for the olympic service and another for the assured service. For 

simplicity and because of limitations to the simultaneous different flows in our testbed, 

the olympic service is studied without the presence of any other traffic. 
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Figure 4.6. Throughput results for third experiment of case 1. 
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Figure 4.7. Percentage of packet loss for third experiment of case 1. 
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 This case describes the design of a DiffServ domain and its implementation in a 

Linux-based network. This case is important because it helps us to understand what the 

services intend to offer and how they can be implemented, as well as  to illustrate their 

use in a set of examples. Moreover, it is shown that the domain meets the semantics of 

the services it offers for the UDP flows that were generated. It is relatively easy and 

straightforward to extend to a larger topology with more DiffServ-aware routers a 

DiffServ domain like the one we presented. It is expected that the same conclusions 

would be derived: the network succeeds in delivering the traffic services it offers using 

the same semantics in which the services are defined. 

 

4.3  Case 2: DiffServ domain with one DiffServ-aware router and a QoS 

unaware Ethernet switch 

The next case studied is based on the previous case, with the addition of an 

Ethernet switch in the network. The switch makes no differentiation of traffic and treats 

all packets equally. The router has the exact same functionality as in the last case, except 

that it receives traffic from a single ingress interface rather than three. The topology of 

this case is shown in Figure 4.8.  The same experiments are studied for this case as 

before, and the results are compared so as to research the impact of the Ethernet switch 

on the performance of the UDP flows (and thus on the performance of the services 

themselves).  
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The bottleneck link in this case is the link between the switch and the router (10 

Mbps). Thus, intuitively one can see that traffic control on the egress side of the router 

would do little with no traffic control on the egress side of the switch. All three flows 

have to contend first on the link between the switch and the router, and there will be no 

congestion on the link between the router and the receiver host. 

In the first experiment, premium traffic is generated at 3 Mbps, assured traffic is 

generated at 5 Mbps, and best-effort generated throughput varies between 1 and 5 Mbps. 

Figure 4.9 shows the throughput at the ingress interface of the router as it is transmitted 

by the switch. Neither premium nor assured traffic receives the desired performance so 

far. This is expected since there is no traffic differentiation in the switch and all traffic is 

experiencing best-effort service. The throughput as measured at the receiver is shown in 

Figure 4.8. Case 2 topology. 
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Figure 4.10, which is identical to Figure 4.9. This shows how the DiffServ-aware router 

is useless when a QoS-unaware Ethernet switch precedes it. Premium traffic receives less 

than the subscribed bandwidth from the moment congestion occurs (1.5 Mbps generated 

best-effort traffic) and keeps dropping performance to the same degree that the generated 

best-effort traffic increases. Also, assured traffic is not assured and does not receive any 

better service than best-effort traffic does. This is better illustrated in Figure 4.11, which 

illustrates the percentage of packet loss as measured at the receiver. The graph shows that 

the flows are more or less treated equally; they all experience about the same average 

packet loss. Overall, the switch has made DiffServ impossible. 
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Figure 4.9. Throughput results at the ingress interface of the router for first experiment of case 2. 
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Figure 4.10. Throughput results for first experiment of case 2. 
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Figure 4.11. Percentage of packet loss for first experiment of case 2. 
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In the second experiment, 5 Mbps of premium traffic and 3 Mbps of assured 

traffic are generated. The best-effort-generated rate varies between 1 and 5 Mbps. 

Throughput results are shown in Figure 4.12. In this case, assured traffic does not receive 

expected throughput even for in-profile traffic. In fact, the assured traffic performance 

starts to fall well before congestion should occur (3.5 Mbps of best-effort generated 

traffic) at 2 Mbps of generated best-effort traffic. Nevertheless, premium traffic does 

receive the guaranteed bandwidth. Looking at the performance measured at the ingress 

interface of the router (Figure 4.13) helps us to understand these results. Premium traffic 

is not policed in the switch so all 5 Mbps of the generated traffic has to compete with the 

rest of the traffic in the bottleneck link. The graph in Figure 4.13 shows that in the worst 

case, premium traffic gets 3.5 Mbps. The router then drops exceeding traffic and ensures 

that 3 Mbps will be reserved for premium traffic in its egress interface, which is shown in 

Figure 4.12. However, in our case, where there is no cross-traffic in the router, there is no 

congestion at that point either. This means that exceeding premium traffic that makes it 

through the link between the switch and the router (but is dropped by the router) wastes 

useful bandwidth that could have been utilized by assured or best-effort traffic.  

Figure 4.14 illustrates the packet loss the flows experience. As expected, the 

premium traffic experiences a steady packet loss as a result of the policing mechanisms 

of the router. The other two flows, on average, experience roughly equal packet loss; 

packet loss occurs at the switch, where traffic is serviced equally. If premium traffic were 

not policed, it would be expected to experience about the same packet loss as the other 

flows. This is illustrated in the next experiment, where the flows are not policed.  
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Figure 4.12. Throughput results for second experiment of case 2. 
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Figure 4.13. Throughput results at the ingress interface of the router for second experiment ofcase 2. 
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Figure 4.14. Percentage of packet loss for second experiment of case 2. 

 
 

For the third experiment (olympic service), Figures 4.15 and 4.16 show the results 

for the throughput and the percentage of packet loss, respectively.  Since the switch does 

not differentiate between traffic, equally generated traffic of equal flows is equally 

serviced in the long term. This is exactly what these figures show. On average, the three 

flows experience about the same throughput and packet loss ratio. At the point where 

congestion starts to occur, at about 3.2 Mbps, all flows receive less than the generated 

throughput and all flows experience packet loss. For every generated value, not all flows 

are affected equally, but on average it seems they all are affected the same.  
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Figure 4.15. Throughput results for third experiment of case 2. 

 
 

This case shows how the semantics of the traffic services offered by our testbed 

break apart when an Ethernet switch that makes no traffic differentiation is introduced in 

the DiffServ domain. The next case shows the effects of a switch that provides minimal 

QoS in the context of the IEEE 802.1p Ethernet traffic classes. 
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Figure 4.16. Percentage of packet loss for third experiment of case 2. 

 
 

4.4  Case 3: DiffServ domain with one DiffServ-aware router and an 

IEEE 802.1p aware Ethernet switch (implementing strict-prioritizing) 

 It is well understood, and it was also shown in the last case, that a network cannot 

provide predictable QoS without having layer-2 devices participating in the QoS 

provision scheme. This is what has motivated IEEE to publish 802.1Q [30] and 802.1p 

[29] standards. Standard 802.1Q defines an extension to the Ethernet frame header, where 

a three-bit user-priority and a 12-bit VLAN ID field are added. Standard 802.1p assigns 

default user-priority semantics, aiming to establish a reasonable set of defaults for use in 

typical environments, allowing at the same time priorities, queue mappings, and queue 
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service disciplines to be managed to best support user’s goals. The standard 

acknowledges that the quality of service needs of an application are surely too complex to 

be represented by a simple number 0 through 7. Nevertheless, it claims that potential 

bandwidth efficiency should be traded for simplicity and that the pragmatic aim of traffic 

classification in Ethernet switches should be to simplify requirements radically to 

preserve the high-speed, low-cost handling characteristic of switches. This case shows 

how the default mappings and queuing disciplines in an IEEE 802.1p compliant Ethernet 

switch are not adequate for a DiffServ domain. The next case shows how Ethernet 

switches can preserve the QoS semantics of a DiffServ domain without sacrificing 

simplicity. On the contrary, the necessity of mapping between Ethernet and DiffServ 

traffic classes imposes an unnecessary burden on the network design. Furthermore, we 

will argue that this does not necessarily yield higher costs or lower performance of the 

Ethernet switches. 

 In this case, the same exact topology of a DiffServ domain is studied as in the last 

case, though the Ethernet switch does support IEEE 802.1p QoS. Seven traffic types are 

defined by the standard and their mappings to the user-priority field are shown in the 

following table. It is not mandatory to maintain a different queue for each of the user-

priority values, but a mapping between them must exist. In our testbed, three queues are 

maintained, one for each of the following traffic types: excellent effort, background, and 

best effort. Queues are served in a strict prioritizing manner, which is what the standard 

mandates, and the priority of a queue derives from the user-priority mapping: the 

excellent-effort queue has the highest priority, the background queue has the second 

highest priority and will be served as long as there are no packets waiting in the highest 
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priority queue, and the best-effort queue has the lowest priority and will be served only 

when neither of the other two queues has packets to transmit.  

 

Table 4.3. Ethernet user-priority to traffic type mappings. 

User-priority Acronym Traffic Type 
1 BK Background 
2 - Spare 
0 BE Best Effort 
3 EE Excellent Effort 
4 CL Controlled Load 
5 VI “Video”, < 100 msecs latency and jitter 
6 VO “Voice”, < 10 msecs latency and jitter 
7 NC Network Control 

 

 

What is needed now is a mapping between user-priority values and PHBs. Such 

mappings have been suggested [31], but none has been standardized. Besides, such 

standardization does not seem very likely; it is more likely that autonomous domains 

would use their own mappings suited for their needs and the services they offer. In our 

testbed, our own mapping examples are used. For the first two experiments, where 

premium, assured, and best-effort traffic are generated, the mapping adopted is shown in 

Table 4.4. What this means is that incoming traffic is monitored at the switch and 

classified to a PHB according to the IP packet destination port. Then, this PHB maps to a 

segregated queue, which in turn maps to a user-priority value. Packets belonging to the 

same PHB utilize the same queue and are tagged with the same user-priority field. 

Actually, tagging the packet with the user-priority field is not needed in this topology, 

where there are no more switches in the domain. The user-priority field in the extended 

Ethernet frame is used to identify the packet so that a switch will not have to perform any 
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classification functions. The field is usually set by an edge switch, which does perform 

the necessary classification functions. In a more unlikely case, trusted hosts would set the 

user-priority field themselves. In both cases, the rest of the switches in a network would 

have to extract only the user-priority field to identify the packet. In our domain, there are 

no more switches. Thus, there is no need to set the user-priority field. 

 

Table 4.4. User-priorities to PHBs mappings for first and second experiments. 

User-priority Queue Ethernet Traffic Type PHB 
0 1 Best Effort 0x0 (Best Effort) 
1 2 Background 0x10-0x38 (Assured) 
3 3 Excellent Effort 0x2e (Premium) 

 

In the first experiment, premium traffic is generated at 3 Mbps, assured traffic is 

generated at 5 Mbps, and best-effort generated throughput varies between 1 and 5 Mbps, 

as in the previous cases. Figure 4.17 shows the measured throughput at the receiver host 

for the three traffic flows. Premium traffic, since it is assigned to the highest priority 

queue in the switch, is guaranteed to use as much bandwidth as necessary. The assured 

traffic is also given the generated throughput, since congestion occurs only because of 

best-effort traffic. The available bandwidth of 10 Mbps between the switch and the router 

is enough to accommodate both premium and assured traffic with no losses; bandwidth 

that is left (~1.5 Mbps) is used by the best-effort traffic. When congestion occurs (at 1.5 

Mbps of generated best-effort traffic), the only traffic affected is the best-effort traffic 

with the lowest priority in the switch. The same is shown in Figure 4.18, where the 

packet loss measured in the receiver for the three flows is depicted; only the best-effort 

traffic experiences packet loss. 
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Figure 4.17. Throughput results for first experiment of case 3. 
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Figure 4.18. Percentage of packet loss for first experiment of case 3. 
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Figure 4.19. Throughput results for second experiment of case 3. 
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Figure 4.20. Percentage of packet loss for second experiment of case 3. 
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These results are different than those presented in the first case. The QoS 

semantics hold only for the premium traffic. Assured traffic gets much better traffic 

service over the best-effort traffic than it is supposed to. This is undesirable. Moreover, 

this case can lead to underutilization of the network. This is shown in the next 

experiment, where 5 Mbps of premium traffic is generated, 3 Mbps of assured service is 

generated, and the best-effort generated rate varies between 1 and 5 Mbps. Since 

premium traffic is not policed on the switch, it utilizes 5 Mbps of the link between the 

switch and the router. Assured traffic also utilizes 3 Mbps, and best effort is the one to 

suffer, receiving only 1.5 Mbps of the available bandwidth, though as the throughput 

results (Figure 4.19) show, the premium traffic is policed in the router and forced to 3 

Mbps. In times of congestion, which starts at best-effort-generated traffic of 1.5 Mbps 

(and occurs only at the switch), only best-effort traffic experiences packet loss. Premium 

traffic eventually experiences a steady packet loss of about 40%, which is the excessive 

throughput, policed by the router (Figure 4.20). The total throughput on the link between 

the router and the sink is not more than 7.5 Mbps, albeit the abundant throughput 

generated for the best-effort service. This is because, on the link between the switch and 

the router, this bandwidth is utilized by excess premium traffic, which is dropped in the 

router. There are approximately 2 Mbps of available bandwidth and thus the network is 

underutilized. 

Figures 4.21 and 4.22 show the performance results for the experiment where the 

three flows are assigned to the three different medals of the olympic service. Figure 4.21 

shows the throughput of every flow for injected traffic that varies between 1 and 4 Mbps. 

The x-axis measures the generated throughput of one flow, and all the flows always 
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generate the same throughput. Gold and silver flows always receive the generated 

bandwidth. When congestion occurs, which is for all values over 3.2 Mbps, bronze traffic 

is the only one that cuts back its bandwidth and experiences packet loss (Figure 4.22). It 

is certain that for values over 5 Mbps of traffic for each flow, the bronze would be led to 

starvation and silver would start experiencing packet loss. Table 4.5 lists the mappings 

between traffic types and PHBs used for this experiment. 

 

Table 4.5. User-priorities to PHBs mappings for second scenario. 

User-priority Queue Ethernet Traffic Type PHB 
0 1 Best Effort AF13 
1 2 Background AF12 
3 3 Excellent Effort AF11 
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Figure 4.21. Throughput results for third experiment of case 3. 
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Figure 4.22. Percentage of packet loss for third experiment of case 3. 

 
 

This case produces examples showing that in a DiffServ domain with no 

homogenous per-hop behavior, the desired performance results are not met. They can be 

altered significantly and, in the overall performance of a real world network, the impact 

would be unpredictable. Decisions about the exact allocation of resources inside a 

DiffServ domain constitute an important task that is expected to be performed by in-

depth analysis of statistical traffic profiles to design an efficient network. The impact of 

the Ethernet switch performing strict prioritizing between the different traffic services 

alters the desired traffic performance, yielding the design for QoS support useless.  
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4.5  Case 4: DiffServ domain with one DiffServ-aware router and a 

DiffServ-aware Ethernet switch 

In the last case, the Ethernet switch is configured to implement the same per-hop 

behaviors as the router. The results presented are expected. It was already anticipated that 

in a carefully designed and provisioned DiffServ domain providing the same PHBs in all 

the network nodes, the traffic services semantics would be preserved. This is what the 

DiffServ architecture is based on. There is no cross-traffic in the router and thus no 

congestion on the link between the switch and the router. The end-to-end service the 

three flows experience is mainly determined by the traffic control of the switch. This case 

also helps us to research the implications by integrating the Ethernet switch into the 

DiffServ architecture.  

 The Ethernet switch monitors, classifies, polices, and schedules traffic the same 

way the router does in the first case. If traffic were measured at the ingress interface of 

the router, results would yield the same plots as those presented in the first case. Traffic 

control in the router preserves the same service performances along the link between the 

router and the destination host. This is verified by the results shown in the following 

figures. Al plots show almost identical results as those presented in the first case. 
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Figure 4.23. Throughput results for first experiment of case 4. 
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Figure 4.24. Percentage of packet loss for first experiment of case 4. 
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Figure 4.25. Throughput results for second experiment of case 4. 
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Figure 4.26. Percentage of packet loss for second experiment of case 4. 
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Figure 4.27. Throughput results for third experiment of case 4. 
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Figure 4.28. Percentage of packet loss for third experiment of case 4. 
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The results of the first experiment where 3 Mbps of premium, 5 Mbps of assured, 

and 1 – 5 Mbps of best-effort traffic are generated are shown in Figures 4.23 and 4.24. 

Figure 4.23 shows the throughput and Figure 4.24 shows the percentage of packet loss for 

the three flows. The traffic service semantics are all preserved, just as they were in the 

first case. Premium traffic is guaranteed its throughput of 3 Mbps even in case of 

congestion, and when congestion occurs, assured traffic experiences better service than 

best-effort traffic.  

Figure 4.25 shows the throughput and Figure 4.26 shows the percentage of packet 

loss for the second experiment. In the second experiment, 5 Mbps of premium traffic and 

3 Mbps of assured traffic are generated. Generated best-effort traffic varies between 1 

and 5 Mbps. The same conclusions are derived from these plots as well. Premium is 

guaranteed 3 Mbps of bandwidth, premium excess traffic is policed (dropped), and 

assured traffic is much less affected than best-effort traffic in times of congestion. 

The results of the third experiment follow. In this case, olympic service is 

implemented where a gold, a silver, and a bronze flow are generated with the same rate 

that varies between 1 and 4 Mbps. As the throughput in Figure 4.27 and the percentage of 

packet loss in Figure 4.28 show, the gold flow experiences the best performance and the 

silver experiences worse than the gold flow, but better than the bronze. The plots are 

again identical to the ones for the third experiment in the first case. 

As already mentioned, the Ethernet switch in this case functions in the same way 

as the router. This means that it classifies incoming packets to traffic services according 

to the UDP destination port of the packet. This requires that the switch, a layer-2 device, 

be aware of the layer-3 protocol. This is undesired and breaks the layer separation law. 
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For the same reasons, the switch should not perform DiffServ marking on the outgoing IP 

packets, although this would be advantageous since it would not require a leaf router. In 

the next chapter, where a framework for integrating Ethernet switches in the DiffServ 

architecture is presented, we show how this problem can be tackled by incorporating the 

VLAN concept. 

   

4.6  Summary 

 This chapter presented the experiments performed to investigate the implications 

of an Ethernet switch inside a DiffServ domain. It has been shown that for the services 

described in this document and for the cases studied, a network has to provide the same 

DiffServ functionality in all its network nodes, regardless of the layer in which they 

operate, to ensure proper service provision. Different services could have been provided 

by the testbed, different configurations and algorithms could have implemented the same 

services, different flows could have been experimented, all giving different numerical 

results. Nevertheless, it is believed that the conclusions would be the same: networks 

incorporating Ethernet switches cannot provide differentiated services without having the 

layer-2 devices performing service differentiation as well. Furthermore, the only 

available quality-of-service support for Ethernet, IEEE 802.1p, would not be adequate. 

The results in the third case proved how service results may be altered by not 

implementing the same PHBs in all the nodes of the DiffServ domain. This alteration 

could very well have significant consequences to the ultimate goal of a QoS architecture 

in a network, which is efficiency and productivity. It is still not clear what services would 

be useful to applications, how these services should be implemented, or even what are the 
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exact needs for traffic services of applications. The differentiated services architecture is 

really mature by now and finds itself at a critical point, we believe, where the usefulness 

of its adoption will be evaluated by gradually being employed in research, academic, and 

private networks. What is important for a network providing QoS is the service definition 

and the correct configuration of system parameters such as percentage of bandwidth 

allocation to the premium service, bandwidth reserved for assured, and so on. In a testbed 

like ours, it is easy to try different numbers, but in a real network, these numbers are 

difficult to get. They should be derived from careful study of statistical traffic profiles 

and the desired overall result. Alterations in the functionality of the system made by 

layer-2 devices, can yield undesired consequences in network behavior, leading to 

unpredictable results that yield the QoS infrastructure useless and a waste of resources. 

By designing and building a Linux DiffServ domain, we argue that this problem 

can be overcome by having Ethernet switches perform the same QoS behavior as 

DiffServ-aware routers. In our testbed, all hosts and network nodes are comprised of 

Linux machines, so it was simple to configure the Linux-based switch to perform the 

same DiffServ functionality  in the last case. The kernel supports the same functionality 

as in the Linux-based router and it was only a matter of reproducing the same 

configuration. Most equipment manufacturers produce both switches and routers, usually 

consisting of the same real-time operating system and other software modules. There is 

also the issue of managing and administrating a DiffServ domain, a task that can get 

much easier if Ethernet switches are integrated in the DiffServ architecture. The next 

chapter describes a framework for doing so. 
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Chapter 5 

5  Suggested Framework 

5.1  Overview 

In the last chapter we argued the necessity for having the layer-2 devices 

implementing the same per-hop behaviors as the layer-3 devices inside a DiffServ 

domain. We even proved the feasibility and success of the argument in the modular and 

extensible Linux environment. However, the solution we presented earlier is  not 

flawless. We assumed that the switch could classify traffic according to IP header values, 

which violates the layers’ separation law. A solution to this problem is given by a model 

based on VLANs that we describe in this chapter. The solution proposed is proven to 

offer more advantages than those that originally motivated us to consider it. DiffServ and 

VLANs are both called aggregate mechanisms because they classify all traffic into a 

finite number of priority classes. When trying to bring DiffServ down to layer 2, it makes 

perfect sense to use an existing mechanism to apply aggregation to the Ethernet level and 

then integrate the two abstractions of aggregation (VLANs and DiffServ) together. First, 

this yields a clearer service-provisioning scheme, a network that is simple to administrate, 

and a straightforward business model. Second, the use of VLANs yields a model easy to 

describe and the model does not need any extra functionality by itself. 

In this chapter, we present our model and apply it in our testbed for the same 

experiments we examined before. The first step we take toward this is to introduce 

VLANs in our testbed. 
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5.2  VLANs in the domain 

The first step is to set up the Ethernet switch in our topology (Figure 5.1) to act as 

a VLAN-aware switch and assign every source host to a different VLAN. Actually, the 

switch does not assign hosts to VLANs, rather it assigns its Ethernet interfaces to 

VLANs. Thus, the interface connected to source1 host (eth1) is assigned to VLAN 1, the 

interface connected to source2 host (eth2) is assigned to VLAN 2, and the interface 

connected to source3 host (eth3) is assigned to VLAN 3 (Figure 5.2). These interfaces 

could have been connected to a physical LAN consisting of several hosts or even to 

another switch.  

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1. Testbed topology. 
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Figure 5.2. VLANs in testbed. 

 

The Ethernet switch will not forward packets between the three mentioned 

interfaces. A packet received from interface eth1 will only be forwarded to the interface 

connecting the switch to the router (eth0) and will be tagged as belonging to VLAN 1. 

Respectively, packets from interface eth2 will only be forwarded to the router and tagged 

as belonging to VLAN 2, and packets from interface eth3 will only be forwarded through 
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forwarded only to the corresponding Ethernet interface, the one assigned to VLAN 1, 2, 

or 3, respectively. Source3 host will never see any packets coming from or destined to 

VLAN 2 and so on. To get a better understanding of the benefits of VLANs, we should 

look at a less simplistic topology, such as the one in Figure 5.3.  
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Figure 5.3. VLANs in a larger topology. 

 

Every circle in Figure 5.3 is a LAN consisting of one or more hosts, which all 

belong to the same VLAN. Every Ethernet packet the switches need to forward is either 

coming from an access link assigned to a VLAN or contains a VLAN tag that assigns the 

packet to a VLAN. In both cases, the switch knows exactly to which interfaces to forward 
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configured to tag the same VLAN, or both. This results in faster switching and isolation 
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four links, this is really important. Communication between LANs belonging to the same 

VLAN is expected to be more frequent than communication between VLANs. The 

mechanism of VLANs enables communication between LANs belonging to the same 
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can be much larger than the collision domain of a LAN. Furthermore, changes made in 

the topology of the network do not impose any serious administration burden. If, for 

example, LAN B swaps physical places with LAN E, the only change necessary is to 

assign the interfaces of the switches to the respective VLANs. There is no need for 

changes in the participating hosts.  

In IEEE 802.1Q, which is the standard specifying VLANs, the eth1, eth2, and 

eth3 interfaces are called access links and the eth0 interface is called a trunk link. In our 

case, only packets going through the trunk link are VLAN tagged. This tag is added to the 

Ethernet header, as the following figure shows. It consists of a two-byte code equal to 

0x8100 that indicates the existence of the VLAN tag inside the Ethernet header, a three-

bit user-priority field, a one-bit field called CFI, and a 12-bit field for the VLAN 

identifier (ID). We have already seen the user-priority field. The VLAN ID indicates the 

virtual LAN the packet in question belongs to. The 12-bit field yields up to 4095 possible 

VLANs. A VLAN ID of zero would indicate that the Ethernet frame does not belong to 

any VLAN.  

 

 

 

 

 

Figure 5.4. VLAN-tagged Ethernet header. 
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VLAN-tagged Ethernet frames. It does not need to perform VLAN switching, but it has 

to be able to extract the VLAN ID of an Ethernet frame and respectively insert a VLAN 

tag in an outgoing packet. This applies only to its interface toward the switch; the 

interface connecting the router to the sink host does not have to be VLAN aware.  

 

5.3 VLANs in DiffServ 

In our new VLAN-aware domain, every packet processed by either the switch or 

the router is associated with a VLAN ID; either the packet is VLAN tagged, containing a 

VLAN ID in the extended Ethernet header, or a VLAN ID is assigned to the interface the 

packet came from. We have already explained how the VLAN ID results in a VLAN 

classification for every packet used for VLAN switching. In our suggested model, 

described in this section, we extend the semantics of the VLAN ID:  the VLAN ID of a 

packet tells each hop, switch, or router, not only in what VLAN it belongs , but also what 

traffic service should be assigned to the packet.  

Looking at our VLAN-aware domain and the DiffServ provision of the fourth 

case of the last chapter, we realize that only one change is needed to realize the idea 

above. The classification rules need to change for the switch and the router. Both the 

switch and the router have to classify packets to traffic services according to the VLAN 

ID of the incoming packet.  Both the switch and the router are eligible to read and set the 

VLAN ID of every packet.  
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Figure 5.5. VLANs assigned to traffic services. 

 

 

Table 5.1. VLAN to traffic service mappings 

VLAN Service Assigned 
1 Premium 
2 Assured 
3 Best-effort 
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premium service is assigned to VLAN 1, the assured service is assigned to VLAN 2, and 
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The switch, on its ingress interfaces, classifies incoming packets to traffic services 

according to the VLAN ID of every packet. It also performs policing. These ingress rules 

result in an internal DSCP marking of the packets, which will be used on the egress 

interface. Table 5.2 lists these internal mappings. Packets from VLAN 1 that conform to 

the profile service are marked with a DSCP of 0x2e. Those packets that do not conform 

are dropped. Packets from VLAN 2 are marked with an internal DSCP of 0x0a as long as 

they conform to the service profile. If they do not, they are marked with the 0x0c DSCP, 

the same code used to mark packets from VLAN 3. The packets are then handed out to 

the forwarding process, which implements the VLAN switching and decides on what 

interface to forward the packets. The egress interface marks outgoing packets with the 

corresponding VLAN ID, but first it implements the per-hop behavior that corresponds to 

the internal DSCP of the packet. Packets internally marked with a DSCP of 0x2e 

experience expedited forwarding, packets marked with 0x0a experience assured 

forwarding with a high assurance, and packets marked with 0x0c experience assured 

forwarding with less assurance.  

 

Table 5.2: Internal VLAN to DSCP mappings for both switch and router. 

VLAN Profile Service Assigned PHB DSCP 
< 3Mbps Premium EF  0x2e 1 
> 3Mbps dropped - - 
< 3Mbps Assured AF11 0x0a 2 
> 3Mbps Best-effort AF12 0x0c 

3 - Best-effort AF12 0x0c 
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The switch in this case acts as a leaf router, but not entirely. It performs the same 

functionality with a leaf router in the sense that it classifies, polices, and differentiates 

traffic. It does not perform reclassification. A leaf router treats out-of-profile assured 

traffic as best effort and also marks this traffic as best effort. In this way, a core router 

would not need to do any policing. The switch in our model should not do so. 

Reclassification requires changing the VLAN ID of the packet, which is not accepted, 

since it would break the semantics of the VLAN ID. Thus, employing our model does not 

necessarily yield the switches as leaf nodes and all the routers as core routers. Even 

though this might be the case in some situations –for example for services that do not 

require reclassification such as premium or olympic service– it is not our goal to 

substitute leaf routers with core routers and move the mechanisms of the leaf router to the 

switch. Our model is based on “copying” the functionality of the leaf DiffServ router to 

the switch, thus ensuring that the QoS semantics are preserved in the presence of the 

Ethernet switch in the domain. A switch and a router are inherently different devices and 

thus should be treated as different. Our model does not treat Ethernet switches as leaf 

routers; rather it provides a means of including Ethernet switches in the DiffServ process. 

Nevertheless, the fact remains that the VLAN ID is universal. Both switches and 

routers can base their classifications according to the same properties. Furthermore, 

VLANs are assigned by the switch and these assignments are preserved throughout the 

domain. 

The router will employ the same functionality as the one described for the switch. 

The difference here lies in the fact that the forwarding process of the router will not base 

its decisions on the VLAN ID of the packet, but on the destination IP address of the 
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packet. Packets will be policed and classified on the ingress interface, an internal DSCP 

will be assigned to them, and the traffic control on the egress interface will provide the 

corresponding service to the internal DSCP per-hop-behavior.  

What has been described so far can easily be extended to a larger topology or for 

different services provisioned by a DiffServ domain. The VLAN-to-traffic service 

mappings for the olympic service are shown in Table 5.3. In a different or larger 

topology, the same services could be provided with no further modifications to our 

model.  

 

Table 5.3. VLAN to traffic service mappings for olympic service. 

VLAN Service Assigned 
1 Gold medal 
2 Silver medal 
3 Bronze medal 

 

 

So far, our model has been described in the context of our testbed and the Linux 

machines it consists of. We will generalize the model by putting forth four requirements 

of the model and a formal description. These requirements must be met by any domain 

that wants to extend the DiffServ mechanisms into Ethernet switches using the suggested 

model. All four requirements are met by our Linux-based DiffServ domain.  

1) The switch must provide traffic control that may implement any of the PHBs 

the DiffServ domain offers. 

2) The switch and the router must support VLAN tagging. 

3)  The switch must be able to classify incoming packets to traffic services with 

respect to their VLAN ID. 
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4) The router must be able to classify incoming packets to traffic services with 

respect to their VLAN ID. 

Our argument in the last chapter confirms the first requirement. We have already 

seen that a domain where the switch does not provide the same traffic control as the 

router will fail to provide the promised traffic services. The second requirement is self-

explanatory. Both the switch and the router need to support VLAN tagging to understand 

and create VLAN-tagged Ethernet frames. Even though a switch that supports VLAN 

tagging would most probably support VLAN switching as well, the latter is not essential 

for our model to work. The third and the fourth requirements are the quintessence of our 

model. The classification in both the switch and the router must be based on the VLAN 

ID of the packet.  

The router, of course, must also provide traffic control that may implement any of 

the PHBs the DiffServ domain offers, but this is not a requirement of our model; it is a 

requirement of the DiffServ model, upon which our model relies. Also, it is worth saying 

that a system that intends to act either as a switch or as a router should provide traffic 

control independently of the forwarding process. In Chapter 3, where we described the 

main principles of the path of a packet inside the Linux kernel, we saw that traffic control 

is independent of the forwarding process. The system needs to be able to bind traffic 

control to any of its interfaces, but traffic needs to be explicitly assigned for traffic 

control to be affected by those mechanisms.  

Given the above requirements, and recapitulating what has been discussed so far, 

our model can be described as follows.  
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Inside a DiffServ domain, users –who in our case are hosts, but could in practice 

be anything else– are assigned to VLANs. VLANs are common for both switches and 

routers inside the domain, and each VLAN is assigned to a traffic service. A leaf router 

classifies packets to traffic classes with respect to their VLAN ID and employs traffic 

control on these classes according to the PHBs the domain provides and under the 

differentiated services architecture. The switch also classifies packets to traffic classes 

with respect to their VLAN ID and employs the same traffic control mechanisms as the 

leaf routers of the domain, with the exception that it does not set the DSCP of outgoing 

packets. 

Any other requirements of our model that are not included in the above 

description are already included in the standard DiffServ model. 

The experimental results from the VLAN case are not repeated here because they 

are exactly the same as the fourth case of Chapter 4. This was expected and verifies that 

the configuration is correct. The changes we have made in our testbed throughout this 

chapter do not affect the behavior of the domain.  These changes illustrate the use of a 

scheme that integrates Ethernet switches into the DiffServ model in a proper manner 

(using existing protocols and without breaking any rules) and that is realistic and feasible 

since it was actually implemented in our Linux testbed.  

   

5.4 Summary 

The suggested model integrates Ethernet switches in the DiffServ architecture 

through the use of VLANs. Primarily, it ensures the coherency of the semantics of the 

traffic services provided by the domain. Furthermore, it does so in a seamless way, 
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without defining any new protocols. The model is based on existing protocols and 

standards, making use of existing mechanisms to implement its own function.  

This integration of DiffServ with VLANs actually has even more advantages than 

those that initially motivated us to consider it. It provides a straightforward and clear 

business model. This model is ready to bring differentiated services for different groups 

of users, VLANs, inside a private network. Network administrators that already use 

VLANs in their networks would acclaim the idea of providing different traffic services to 

each VLAN. Administrators who wish to provide differentiated services for the users of 

their networks could benefit from the idea of grouping users to VLANs and provision 

their networks with different traffic services for different VLANs. 

Moreover, the fact that traffic control is independent of network control 

(switching and routing) inside the Linux kernel makes it possible to use the same exact 

code for traffic control in both cases (Linux as a switch, Linux as a router). This should 

be the case for product devices too. The same manufacturers usually produce both 

switches and routers and would usually use the same operating system for both lines of 

products and would also use much of the same software. Moreover, many devices by now 

may have real-time Linux kernels. The industry implementing DiffServ support for its 

products would probably use the example of Linux kernels and ns2 of providing large 

modularity and extensibility to their software code.     

It seems that recently, many network designers and administrators have resorted 

to having Linux machines undertaking the role of an Ethernet switch or a router in their 

networks. The flexibility and the richness of the Linux kernel allow them to provide 

efficient and very cheap solutions. At a time when some small companies take a while to 
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substitute a broken Ethernet switch, the network administrator can substitute the broken 

switch with an old and unused personal computer running Linux. They can even use the 

more sophisticated mechanisms of the latest Linux kernels to provide services for 

multiple customers, employing VLAN, NAT, and more. They also can use the advanced 

security mechanisms of the Linux kernels and build powerful firewalls. There are some 

who are already doing all that, and these administrators are the first who could profit 

from using the integration of the Ethernet switches in the DiffServ architecture. Actually, 

in a way, they might already been doing so. Network administrators who base their  

networks on Linux machines sometimes also provide traffic control, such as load 

balancing or prioritizing. This is not necessarily done under the DiffServ scheme, but 

always, we believe, the network designer treats switches and routers as equivalent hops.  

In theory, though, this integration is not yet formulized. The DiffServ standards 

and any of the Ethernet-related specifications do not take into account such integration. 

We argue that this integration is extremely simple in concept and it needs only to be 

accepted. In practice, this integration will come one way or another. We believe that our 

work gives a clear picture of the problem and its solution, and we argue that our model 

formalizes this integration, which can expedite the use of DiffServ in intranets. 
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Chapter 6 

6  Conclusions 

 The need for QoS in the Internet is well known and proven; there are many 

applications and services that can benefit from QoS and, along with the ever increasing 

bandwidth, there will be virtually no limit to what the Internet can incorporate. However, 

the actual deployment of a global QoS framework in the Internet is far from simple. The 

design of the Internet  has made its revolutionary growth possible but holds back 

deployment of new network services such as QoS. All the proposed work for QoS in the 

Internet has met with difficulties, but it is a fact that QoS will be part of the Internet in the 

future –it is only a question of how. The differentiated services architecture stands as the 

most promising solution for QoS in the Internet for the near future. It is not as fine 

grained as might be desired, but it can surely provide quality of service in a feasible, 

scalable way.  

 DiffServ does not come easy either. Despite the fact that DiffServ has been 

around for quite some time, it still has not been deployed commercially. The services 

offered by a DiffServ network still need to be ratified, the mechanisms and the algorithms 

that will implement the framework still need to get more mature, and the administration 

of such a network definitely needs to become simpler for the operator and more 

straightforward for the end user. 

 But these are not DiffServ’s only drawbacks. An additional problem is its lack of 

integration with layer-2 devices. It does not take into account Ethernet switches or any 
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other layer-2 devices. Instead, it refers only to layer-3, IP, devices. However, Ethernet 

switches are an integral part of most networks today. Traffic services defined for 

DiffServ assume an underlying model where per-hop behaviors are common throughout 

all the nodes of the network. Our work has shown how harmful the effects of an 

oblivious-to-traffic differentiation Ethernet switch can be on the performance of the 

services provided by a DiffServ domain. It has also been shown that the only current 

formal means of extending QoS to layer 2, which is IEEE’s 802.1p, is not adequate for a 

DiffServ domain. 

 We have argued this is a very important problem. Ethernet switches are 

everywhere,  part of almost any network. Deploying DiffServ over networks with no 

adequate layer-2 QoS support could be disastrous. At a time when traffic services need to 

convince users and network administrators about their value, thus enabling DiffServ 

deployment, these services would be distorted and could result in a less effective network 

than a best-effort network. This could further discourage the use of DiffServ. 

 There is though a very simple –with respect to the extent of the problem– 

solution. This thesis has suggested that Ethernet switches, and layer-2 devices in general, 

should employ the same traffic control mechanisms as layer-3 devices, i.e., routers. Thus, 

per-hop behaviors would be common for all network nodes inside a DiffServ domain. 

There could be two antitheses to this. First is that functionality in Ethernet switches 

should be kept as simple as possible and second is that DiffServ is too tightly attached to 

the IP protocol. 

 We object to the first argument. We believe there is no reason for an Ethernet 

switch not to have all the functionality it needs. In practice, switches and routers are 
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made of much the same hardware and software. Most of the time, a manufacturer would 

produce both type of devices, sharing parts of the same software. Thus, software 

developed to support DiffServ in a router could be easily re-used in an Ethernet switch. 

Actually, some manufacturers are already enhancing Ethernet switches with traffic 

control and DiffServ capabilities. As far as the second argument goes, this thesis has 

proposed a framework where Ethernet switches are seamlessly integrated in the DiffServ 

architecture. 

 The suggested model is based on the concept of VLANs. It integrates switches in 

DiffServ without breaking the layers’ separation law and uses only existing protocols and 

mechanisms to do so. The VLAN ID is used as the universal (common to both switches 

and routers) identifier for traffic classification. All nodes classify traffic according to the 

VLAN ID and implement a common set of PHBs. Network administrators need to create 

only a mapping between a VLAN ID and a traffic service, which would be propagated 

among all the nodes of their domain.  

 This scheme yields a straightforward business model. The users of a network 

domain with similar QoS needs are grouped in a single VLAN, and every VLAN is 

assigned a specific traffic service. For example, a group of users receives best-effort 

service, whereas another group receives assured. Another group, which could consist of 

only one user, could be assigned the premium service. The domain could be a corporation 

that anticipates better productivity with the use of different traffic services or a 

commercial network that makes a profit by selling better services. 

Furthermore, VLAN classification does not have to be done by Ethernet ports. 

This is the IEEE standard prerequisite, but a more sophisticated means of classification 
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could be used. For example, a VLAN could consist of all the VoIP connections, where a 

connection is identified by the tuple: source address, source port, destination address, and 

destination port. Moreover, a distributed system in a private network could be assigned to 

the better-than-best-effort service. This means that using the VLAN IDs as the user 

identifier does not restrict at all who/what the user will be. 

 

This thesis has made the following contributions: 

• The design of a DiffServ domain has been presented. Four traffic services 

have been described in the context of this DiffServ domain. 

• The DiffServ domain was implemented in a Linux testbed. This thesis 

provides all the necessary information for such an implementation, as well all the 

Linux-related configuration work required for this. 

• The effects of a QoS-unaware Ethernet switch inside the domain have been 

studied. In particular, how the traffic services offered by the domain are affected 

is investigated. The results show that the Ethernet switch has made DiffServ 

impossible. 

• The provisioning of the switch with IEEE 802.1p traffic control and how this 

can help has been researched. Again, the results show that the intended traffic 

service semantics break apart. 

• The fact that the traffic service semantics can be preserved by having the 

switch incorporate the same traffic control mechanisms as the router is illustrated 

in the testbed. 
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• A model that seamlessly integrates Ethernet switches in the differentiated 

services architecture is suggested. The model is based on the concept of VLANs. 

• The strong business model that the use of VLANs with DiffServ constitutes 

has been discussed. 

Also, 

• A modified version of the iperf program, suitable for a script process, has 

been created. 

• The configuration for a Linux machine to act as a VLAN switch was 

presented. 

• An automation procedure for conducting performance measurements in the 

domain has been developed, which can be repeated or modified for future use. 
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APPENDIX A – Testbed Software Provisioning 

This section describes in detail the software provisioning of the Linux machines 

that comprise the testbed.  

RedHat 7.3 Linux distribution, which is based on the 2.4.18-3 Linux kernel, is 

installed in all six machines. This version of the Linux kernel contains all the kernel-level 

software components for traffic control and DiffServ implementation that are necessary 

in our study. The kernel, however, needs to be reconfigured and rebuilt so the desired 

functionality is included in the runtime image of the kernel.  

Rebuilding the kernel, the following kernel configuration options have to be 

enabled in the section “Networking options”:  

• Kernel/User netlink socket (CONFIG_NETLINK)  

• Network packet filtering (CONFIG_NETFILTER)  

• QoS and/or fair queuing (CONFIG_NET_SCHED)  

• 802.1d Ethernet Bridging (CONFIG_BRIDGE) 

• 802.1Q VLAN Support (CONFIG_VLAN_8021Q) 

In the section “Networking options, QoS and/or fair queuing,” all the 

configuration options should be enabled. 

 In the “Processor type and features” section, the “Symmetric multi-processing 

support” (CONFIG_SMP) option must be disabled when single processor machines are 

used. It has come to our attention that when this option is enabled for single processor 

machines, unpredictable problems can occur. 
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In the “Network device support, Ethernet (10 or 100Mbit) ” section, the 

“EtherExpress Pro/100 support” option (CONFIG_EEPRO100) must be enabled as a 

loadable module. Furthermore, the “/etc/modules.conf” file needs to be edited to force 10 

Mbps half duplex speed for all Ethernet links. 

Also, before rebuilding the kernel, the “ing-stats.patch” needs to be applied to the 

“sch_ingress.c” kernel file. This fixes a couple of bugs related to the ingress queuing 

discipline. Finally, the “vlan-eepro100.patch” needs to be applied to the “eepro100.c” 

kernel file. This patch enables the Ethernet driver to cope with frames with a maximum 

size of 1518 bytes, instead of 1514. The VLAN tagging support adds an extra field of 

four bytes in the Ethernet header; thus, for a full-size IP packet of 1500 bytes, the total 

maximum frame size, including Ethernet header and the VLAN tag, will be 1518 bytes. 

Neither of those patches, to the best of our knowledge, resides in any permanent Internet 

location.  

Some of the configurations described above are necessary only for the Linux 

machine acting as a switch and the Linux machine acting as a router (e.g., traffic control 

capabilities). Other configurations are necessary for all the machines (e.g., eepro100 

module). Nevertheless, in building a testbed like ours it is most often best to configure 

and build one kernel and then replicate it in all the machines.  

The same goes for the configuration of the user-space programs of the Linux 

machines. The programs described next do not have to be installed in all machines, but 

creating a Linux image once and then replicating it  for all machines makes the testbed 

setup easier. Furthermore, it is straightforward in terms of which machines need to have 

installed which particular programs. 
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The first user-space program we discuss is the tc (traffic control) program. This 

will probably be part of the original Linux installation, but it has to be updated to include 

DiffServ support. The program comes as part of the iproute2 package, which can be 

found in [24]. The same reference indicates how the package should be built. Then, the 

newly created tc program should replace the original one, usually in the “/usr/sbin” 

directory. However, before the building process, a number of patches should be applied 

to the tc source code. These patches come as a part of the tcng (traffic control next-

generation) package, which can be found in [26]. The package constitutes a new means of 

controlling the traffic control mechanisms of the Linux kernel. However, it also includes 

four patches for the old tc source code.  

The bridging functionality of the Linux kernel needs to be configured and 

controlled by a user-space program. The program is called brctl and is included in the 

bridge_utils package, which can be found in [32]. The package comes in an rpm format 

and its installation is fairly simple. The brctl program is used to create instances of 

bridging entities inside the kernel, to add and remove interfaces to and from the bridges, 

and to report statistics and status information. 

The user-space program that controls the VLAN tagging support in the Linux 

kernel is called vconfig and is part of the vlan package, which can be found in [33]. The 

same web site provides help for building the program and using it.  

The programs described so far constitute the means for controlling Linux- kernel 

capabilities. Next, application-level programs used in our testbed are discussed. First, an 

ssh server needs to be installed and enabled in all machines. This is required for the 

automatic process of performing experiments and collecting data. The server is included 
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in the RedHat distribution. Also, the xgraph program needs to be built and installed. The 

xgraph program is used to display experimental results on the fly.  

The major tool for performing automatic experiments and collection of data is the 

expect program. This is a tcl program that enables scripting for interactive procedures. It 

comes in an rpm format and its installation is fairly simple. The rationale behind using  

this program is discussed in Chapter 3, and the scripts are presented in Appendix D. 

Finally, the iperf program is installed in our testbed, as discussed in Chapter 3. 

The program and its documentation can be found in [28], though, as already mentioned, 

the program had to be modified to accommodate necessary changes for the automation of 

our experiments. The changes made have to do only with the server side of the program. 

By default, the program prints out on the console throughput and packet loss statistics. 

Since this is not adequate when the program runs as  part of a script, it was modified to 

write statistics in files. The name of the files is passed as a command line argument to the 

program. Actually, one name is given to the program, which then creates two files with 

the same name, but with a different suffix. The letters “_bw” are appended to the given 

name for the file that keeps bandwidth statistics and the letters “_ls” are appended to the 

given name for the file that keeps packet loss statistics. The format of the output files is 

closely related to the expect scripts that process them to produce xgraph and excel input 

files. The modified source code, along with the detailed documentation of the changes, 

can be found in the electronic material that accompanies this thesis. 
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APPENDIX B – VLAN switching in Linux 

The Linux kernel does not provide explicit VLAN support. It does provide, 

however, VLAN tagging support. There is a way to implement VLAN bridging in Linux 

by exploiting the features of the bridging module, which can run multiple instances of a 

bridging entity. To see how this is done, we first need to examine the VLAN tagging 

support of Linux.  

The vconfig program creates logical interfaces on top of existing physical 

Ethernet interfaces. A VLAN ID (an integer between 1 and 4095) and a reference to an 

existing interface are given to the program and it creates a logical interface assigned to 

the given VLAN ID. The interfaces created by the vconfig program will be listed by the 

ifconfig program, along with the rest of the (physical) interfaces. The new interface takes 

its name from the name of the physical interface on which it was created and the VLAN 

ID, e.g., “eth0.1”. A physical interface accepts tagged packets only for those VLAN IDs 

for which a logical interface has been created. The received packets are then handed out 

to the kernel at the point where the logical interface is attached. Outgoing packets will be 

tagged with the VLAN ID associated with the logical interface they are leaving. These 

interfaces can be attached to a bridge or can be given an IP address. In any case, they 

look no different to the upper layers than the rest of the interfaces of the system.  

IEEE 802.1D bridging support (Ethernet switching) can be controlled in Linux 

using the brctl program. The program allows the creation of multiple bridging instances, 

assumes the task of adding or removing interfaces to each bridging instance, and can 

control or monitor any other task related to Ethernet switching. 
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 Three different bridging instances are created by the brctl program, named 

VLAN1, VLAN2, and VLAN3. Interface eth1 is attached to VLAN1, eth2 is attached to 

VLAN2, and eth3 is attached to VLAN3. On interface eth0, three logical interfaces are 

created: eth0.1, eth0.2, and eth0.3. The first one is attached to VLAN1, the second one to 

VLAN2, and the third one to VLAN3. This is depicted in the following figure. This 

results in the exact desired behavior: packets originating from source1 (connected to the 

switch with eth1) will be forwarded by the switch only on the trunk link, tagged with 

VLAN ID of 1. In the reverse direction, a packet tagged with a VLAN ID of 1 will be 

forwarded only to source1. The same goes for source2 and source3.  

 

 

 

 

 

 

 

 

 

 

Figure B.1. Block diagram of bridging entities in Linux kernel. 
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Three logical interfaces for the same VLANs (eth1.1, eth1.2, and eth1.3) also 

have to be created on top of the ingress interface of the router, where tagged packets are 

received.  Each of the interfaces is attached to the same IP address. For its forwarding 

process, the router does not care about the interface the packet came from. Nevertheless, 

in the reverse direction, the router needs to know the VLAN ID to mark every outgoing 

packet with and thus the logical interface to go out from. A set of routing rules must be 

given to the router. Hosts belonging to the same VLAN are expected to belong to the 

same IP subnetwork as well, creating a broadcast domain. Thus, the rules in the routers 

are expected to assign subnetworks to VLANs. In our case, we  need to map only unique 

IP addresses to VLANs; packets destined to source1 are routed through the eth1.1 

interface, packets destined to source2 are routed through the eth1.2 interface, and packets 

destined to source3 are routed through the eth1.3 interface. 
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APPENDIX C – Traffic control scripts 

A user-space program, called tc, configures the traffic control mechanisms of the 

Linux kernel. Using this program requires in-depth knowledge of the traffic control 

structure and the elements involved. The general descriptions of the major mechanisms 

used in our work were described in Chapter 3. In Chapter 4, we explained how these 

mechanisms were used to drive the desired behavior. This section presents the shell 

scripts that repeatedly call the tc program to set the traffic control mechanisms for each 

case. There are different scripts for the router and the switch and there are different 

scripts for different services, but there are also some that are common.  

 

C.1 Scripts for the first case 

Only one script needs to be run to implement DiffServ functionality in the 

domain,  though there is a different script for the experiments where the premium, the 

assured, and the best-effort services are offered and for the experiment where the olympic 

service is provided. For the former case the script is called “set-router1-all” and for the 

latter “set-router1-af”. The number “1’ in the filename refers to the fact that the router is 

the only node in the domain. The suffix “all” refers to the fact that almost  all services are 

provided and the suffix “af” refers to the fact that the olympic service is provided by the 

AF PHB. These two scripts are quite similar. Both attach a filter on every ingress 

interface and mark the incoming traffic according to predefined patterns. The first script 

assigns UDP 6001 port traffic to premium service, UDP 6002 port traffic to assured, and 

UDP 6003 port to best-effort traffic. The second script assigns UDP 6001 port traffic to 
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the gold medal, UDP 6002 port traffic to the silver medal, and UDP 6003 port traffic to 

the bronze medal. The other difference is that the first script installs meters (policers), 

whereas the second does not. In every case, the mechanisms mentioned so far are 

installed on the ingress interfaces, where traffic is filtered and marked internally with the 

corresponding DSCP value, as discussed in Chapter 4.  

At the end, both scripts run the “set-egress” script, which configures the traffic 

control at the egress interface of the router. In every case and for every experiment, the 

same script configures the egress interface of the router. The same script also configures 

traffic control at the egress interface of the switch when DiffServ functionality is enabled 

on the switch. The configured functionality in the egress interface contains all the 

necessary mechanisms to implement any combinations of services studied in this work. 

The internal DSCP value of every packet, set by the ingress interface, indicates which 

mechanisms will be used in every case. For different cases of topologies and for different 

cases of services, the ingress rules will change, but the egress functionality remains the 

same.  

 

The script “set-router1-all” follows: 

#! /bin/sh 
# 
# use flag -x for echoeing commands 
# 
# file: set-router1-all 
# 
 
IN_DEV1=eth1 
IN_DEV2=eth2 
IN_DEV3=eth3 
 
 
echo 
echo Setting diffserv for router1 
echo 
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# All packets are marked with a DSCP in the tcindex field that is  
# going to be used on the egress side. 
# The value set is the whole TOS. DSCP is TOS shifted by two 
# EF  : 0xb8 (TOS) = 0x2e (DSCP) 
# AF11: 0x28 (TOS) = 0x0a (DSCP)  
# AF12: 0x30 (TOS) = 0x0c (DSCP) 
 
##############  Ingress Side 1 (EF)  ############## 
 
# Install the ingress qdisc on the ingress interface 
tc qdisc add dev $IN_DEV1 handle ffff: ingress 
 
# Add u32 filter 
tc filter add dev $IN_DEV1 parent ffff: protocol ip prio 4 \ 
        handle 1: u32 divisor 1 
         
# EF traffic (port 6001) is policed and is marked 
tc filter add dev $IN_DEV1 parent ffff: protocol ip prio 4 u32 \ 
        match ip dport 6001 0xffff \ 
        police rate 3000kbit burst 90k drop \ 
 flowid 0xb8 
 
##############  Ingress Side 2 (AF)  ############## 
 
# Install the ingress qdisc on the ingress interface 
tc qdisc add dev $IN_DEV2 handle ffff: ingress 
 
# Add u32 filter 
tc filter add dev $IN_DEV2 parent ffff: protocol ip prio 4 \ 
        handle 1: u32 divisor 1 
         
# AF in-profile traffic (port 6002) is marked as assured 
tc filter add dev $IN_DEV2 parent ffff: protocol ip prio 4 u32 \ 
        match ip dport 6002 0xffff \ 
        police rate 2500kbit burst 90K continue \ 
 flowid 0x28  
 
# AF out-of-profile traffic (port 6002) is marked as best-effort 
tc filter add dev $IN_DEV2 parent ffff: protocol ip prio 5 u32 \ 
 match ip dport 6002 0xffff \ 
 flowid 0x30 
 
##############  Ingress Side 3 (BE)  ############## 
         
# Install the ingress qdisc on the ingress interface 
tc qdisc add dev $IN_DEV3 handle ffff: ingress 
 
# Add u32 filter 
tc filter add dev $IN_DEV3 parent ffff: protocol ip prio 4 \ 
        handle 1: u32 divisor 1 
                
# BE traffic is marked  
tc filter add dev $IN_DEV3 parent ffff: protocol ip prio 4 u32 \ 
        match ip dport 6003 0xffff \ 
        flowid 0x30 
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./set-egress 
 
 
 
The script “set-router1-af” follows: 

#! /bin/sh 
# 
# use flag -x for echoeing commands 
# 
# file: set-router1-af 
# 
 
IN_DEV1=eth1 
IN_DEV2=eth2 
IN_DEV3=eth3 
 
 
echo 
echo Setting diffserv for router1 
echo 
 
 
# All packets are marked with a DSCP in the tcindex field that is  
# going to be used on the egress side. 
# The value set is the whole TOS. DSCP is TOS shifted by two 
# AF11: 0x28 (TOS) = 0x0a (DSCP)  
# AF12: 0x30 (TOS) = 0x0c (DSCP)  
# AF13: 0x38 (TOS) = 0x0e (DSCP) 
 
##############  Ingress Side 1 (AF11)  ############## 
 
# Install the ingress qdisc on the ingress interface 
tc qdisc add dev $IN_DEV1 handle ffff: ingress 
 
# Add u32 filter 
tc filter add dev $IN_DEV1 parent ffff: protocol ip prio 4 \ 
        handle 1: u32 divisor 1 
         
# AF11 traffic (port 6001) is marked 
tc filter add dev $IN_DEV1 parent ffff: protocol ip prio 4 u32 \ 
        match ip dport 6001 0xffff \ 
 flowid 0x28 
 
##############  Ingress Side 2 (AF12)  ############## 
 
# Install the ingress qdisc on the ingress interface 
tc qdisc add dev $IN_DEV2 handle ffff: ingress 
 
# Add u32 filter 
tc filter add dev $IN_DEV2 parent ffff: protocol ip prio 4 \ 
        handle 1: u32 divisor 1 
         
# AF12 traffic (port 6002) is marked  
tc filter add dev $IN_DEV2 parent ffff: protocol ip prio 4 u32 \ 
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        match ip dport 6002 0xffff \ 
   flowid 0x30  
 
##############  Ingress Side 3 (AF13)  ############## 
         
# Install the ingress qdisc on the ingress interface 
tc qdisc add dev $IN_DEV3 handle ffff: ingress 
 
# Add u32 filter 
tc filter add dev $IN_DEV3 parent ffff: protocol ip prio 4 \ 
        handle 1: u32 divisor 1 
                
# AF13 traffic is marked  
tc filter add dev $IN_DEV3 parent ffff: protocol ip prio 4 u32 \ 
        match ip dport 6003 0xffff \ 
        flowid 0x38 
 
 
./set-egress 
 
 
 
The script “set-egress” follows: 

#! /bin/sh 
# 
# use flag -x for echoeing commands 
# 
# file: set-egress 
# 
 
OUT_DEV=eth0 
 
AVGPKT=1000 
 
 
##############  Egress Side  ############## 
 
#### Main 
 
# Attach a dsmarker on the egress interface 
tc qdisc add dev $OUT_DEV handle 1:0 root dsmark indices 64  
 
# Shift out the two last bits of the TOS field to  
# get the DSCP field 
tc filter add dev $OUT_DEV parent 1:0 protocol ip prio 1 \ 
 tcindex mask 0xfc shift 2 pass_on 
 
# Add root CBQ qdisc on top of DSMARK 
# All packets go to this qdisc 
tc qdisc add dev $OUT_DEV parent 1:0 handle 2:0 cbq \ 
        bandwidth 10Mbit allot 1514 cell 8 avpkt $AVGPKT mpu 64        
 
#### EF Traffic 
 
# Add CBQ class for EF traffic 
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tc class add dev $OUT_DEV parent 2:0 classid 2:1 cbq isolated borrow\ 
        bandwidth 10Mbit \ 
        rate 3Mbit avpkt $AVGPKT prio 1 \ 
        allot 1514 weight 1 maxburst 20  
 
# Classify packets to EF class 
tc filter add dev $OUT_DEV parent 2:0 protocol ip prio 1 \ 
 handle 0xb8 tcindex classid 2:1 pass_on 
 
#### AF Traffic 
 
# Shift DSCP to get number of AF class 
tc filter add dev $OUT_DEV parent 2:0 protocol ip prio 2 \ 
 tcindex mask 0xf0 shift 4 pass_on 
 
# Add CBQ class for AF1 traffic 
tc class add dev $OUT_DEV parent 2:0 classid 2:2 cbq isolated borrow\ 
 bandwidth 10Mbit \ 
 rate 3Mbit avpkt $AVGPKT prio 2 \ 
 allot 1514 weight 0.3 maxburst 20 
 
# Classify packets to AF1 class 
tc filter add dev $OUT_DEV parent 2:0 protocol ip prio 2 \ 
 handle 1 tcindex classid 2:2 pass_on 
 
# Create GRED qdisc for AF1 class 
tc qdisc add dev $OUT_DEV parent 2:2 gred setup DPs 3 default 2  
 
# Classify packets to AF11 drop precedence 
tc filter add dev $OUT_DEV parent 1:0 protocol ip prio 1 \ 
 handle 10 tcindex classid 1:111 
 
# Configure DP 1 of GRED 
tc qdisc change dev $OUT_DEV parent 2:2 gred limit 60KB min 15KB \ 
 max 45KB burst 20 avpkt 1000 bandwidth 10Mbit DP 1 \ 
 probability 0.1 
 
# Classify packets to AF12 drop precedence 
tc filter add dev $OUT_DEV parent 1:0 protocol ip prio 1 \ 
 handle 12 tcindex classid 1:112 
 
# Configure DP 2 of GRED 
tc qdisc change dev $OUT_DEV parent 2:2 gred limit 60KB min 15KB \ 
 max 45KB burst 20 avpkt 1000 bandwidth 10Mbit DP 2 \ 
 probability 0.3 \ 
 
# Classify packets to AF13 drop precedence 
tc filter add dev $OUT_DEV parent 1:0 protocol ip prio 1 \ 
 handle 14 tcindex classid 1:113 
 
# Configure DP 3 of GRED 
tc qdisc change dev $OUT_DEV parent 2:2 gred limit 60KB min 15KB \ 
 max 45KB burst 20 avpkt 1000 bandwidth 10Mbit DP 3 \ 
 probability 0.6 \ 
 
#### BE Traffic 
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# Add CBQ class for BE traffic 
tc class add dev $OUT_DEV parent 2:0 classid 2:3 cbq bounded \ 
 bandwidth 10Mbit \ 
 rate 3Mbit avpkt $AVGPKT prio 2 \ 
 allot 1514 weight 0.3 maxburst 20 
 
# Classify packets to BE class 
tc filter add dev $OUT_DEV parent 2:0 protocol ip prio 1 \ 
 handle 0 tcindex classid 2:3 pass_on 
 
 
 
 
 

C.2 Scripts for the second case 

For this case, the scripts “set-router2-all” and “set-router2-af” need to run in the 

router for the corresponding cases of services. These scripts are different from the 

respective “set-router1-all” and “set-router1-af” in that the filters and policers are 

installed on the single ingress interface of the router. 

 

The script “set-router2-all” follows: 

#! /bin/sh 
# 
# use flag -x for echoeing commands 
# 
# file: set-router2-all 
# 
 
IN_DEV=eth1 
 
echo 
echo Setting diffserv for router2 
echo 
 
 
# All packets are marked with a DSCP in the tcindex field that is  
# going to be used on the egress side. 
# The value set is the whole TOS. DSCP is TOS shifted by two 
# EF  : 0xb8 (TOS) = 0x2e (DSCP) 
# AF11: 0x28 (TOS) = 0x0a (DSCP)  
# AF12: 0x30 (TOS) = 0x0c (DSCP) 
 
 
# Install the ingress qdisc on the ingress interface 
tc qdisc add dev $IN_DEV handle ffff: ingress 
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# Add u32 filter 
tc filter add dev $IN_DEV parent ffff: protocol ip prio 4 \ 
        handle 1: u32 divisor 1 
         
# EF traffic (port 6001) is policed and is marked 
tc filter add dev $IN_DEV parent ffff: protocol ip prio 4 u32 \ 
        match ip dport 6001 0xffff \ 
        police rate 3000kbit burst 90k \ 
        drop flowid 0xb8 
 
# AF in-profile traffic (port 6002) is marked as assured 
tc filter add dev $IN_DEV parent ffff: protocol ip prio 4 u32 \ 
        match ip dport 6002 0xffff \ 
        police rate 2500kbit burst 90K continue \ 
 flowid 0x28  
 
# AF out-of-profile traffic (port 6002) is marked as best-effort 
tc filter add dev $IN_DEV parent ffff: protocol ip prio 5 u32 \ 
 match ip dport 6002 0xffff \ 
 flowid 0x30 
 
# BE traffic is marked  
tc filter add dev $IN_DEV parent ffff: protocol ip prio 4 u32 \ 
        match ip dport 6003 0xffff \ 
        flowid 0x30    
             
./set-egress 
 
 
 
 
 
The script “set-router2-af” follows: 

#! /bin/sh 
# 
# use flag -x for echoeing commands 
# 
# file: set-router2-af 
# 
 
IN_DEV=eth1 
 
echo 
echo Setting diffserv for router2 
echo 
 
 
# All packets are marked with a DSCP in the tcindex field that is  
# going to be used on the egress side. 
# The value set is the whole TOS. DSCP is TOS shifted by two 
# AF11: 0x28 (TOS) = 0x0a (DSCP)  
# AF12: 0x30 (TOS) = 0x0c (DSCP)  
# AF13: 0x38 (TOS) = 0x0e (DSCP) 
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# Install the ingress qdisc on the ingress interface 
tc qdisc add dev $IN_DEV handle ffff: ingress 
 
# Add u32 filter 
tc filter add dev $IN_DEV parent ffff: protocol ip prio 4 \ 
        handle 1: u32 divisor 1 
         
# AF11 traffic (port 6001) is marked 
tc filter add dev $IN_DEV parent ffff: protocol ip prio 4 u32 \ 
        match ip dport 6001 0xffff \ 
        flowid 0x28 
 
# AF12 traffic (port 6002) is marked  
tc filter add dev $IN_DEV parent ffff: protocol ip prio 4 u32 \ 
        match ip dport 6002 0xffff \ 
 flowid 0x30  
 
# AF13 traffic (port 6003) is marked  
tc filter add dev $IN_DEV parent ffff: protocol ip prio 4 u32 \ 
        match ip dport 6003 0xffff \ 
        flowid 0x38 
             
./set-egress 
 
 
 

 

C.3 Scripts for the third case 

In this case, besides setting DiffServ functionality for the router as in the last case, 

traffic control is also configured for the switch. This is done by the “set-switch-prio” 

script, which configures strict prioritizing in the switch. In particular, it assigns the 

highest priority to traffic destined to port 6001, next priority for traffic destined to port 

6002, and finally, least priority for traffic destined to port 6003. 

 

The script “set-switch-prio” follows: 

#! /bin/sh 
# 
# use flag -x for echoeing commands 
# 
# file: set-switch-prio 
# 
 
OUT_DEV=eth0 
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echo 
echo Setting IEEE 802.1p switch case 
echo 
 
 
tc qdisc add dev $OUT_DEV root handle 1: prio 
 
tc qdisc add dev $OUT_DEV parent 1:1 handle 10: pfifo limit 40 
tc qdisc add dev $OUT_DEV parent 1:2 handle 20: pfifo limit 40 
tc qdisc add dev $OUT_DEV parent 1:3 handle 30: pfifo limit 40 
 
tc filter add dev $OUT_DEV protocol ip parent 1: prio 1 u32 \ 
        match ip dport 6001 0xffff \ 
        flowid 1:1 
 
tc filter add dev $OUT_DEV protocol ip parent 1: prio 1 u32 \ 
        match ip dport 6002 0xffff \ 
        flowid 1:2 
 
tc filter add dev $OUT_DEV protocol ip parent 1: prio 1 u32 \ 
        match ip dport 6003 0xffff \ 
        flowid 1:3 
 
 

C.4 Scripts for the fourth case 

 In this case, DiffServ functionality is set in the switch. Thus, two scripts are 

needed, one that configures the switch to provide premium, assured, and best-effort 

service (“set-switch-all”) and one that configures the switch to provide the olympic 

service (“set-switch-af”). These scripts are different from those written for the router in 

that they attach the filters to the interface that represents the bridging entity, rather than to 

the physical interfaces themselves. 

 

The script “set-switch-all” follows: 

#! /bin/sh 
# 
# use flag -x for echoeing commands 
# 
# file: set-switch-all 
# 
 
IN_DEV=bridge 



 

95 

OUT_DEV=eth0 
 
echo 
echo Setting diffserv for switch 
echo 
 
 
# All packets are marked with a DSCP in the tcindex field that is  
# going to be used on the egress side. 
# The value set is the whole TOS. DSCP is TOS shifted by two 
# EF  : 0xb8 (TOS) = 0x2e (DSCP) 
# AF11: 0x28 (TOS) = 0x0a (DSCP)  
# AF12: 0x30 (TOS) = 0x0c (DSCP) 
 
 
# Install the ingress qdisc on the ingress interface 
tc qdisc add dev $IN_DEV handle ffff: ingress 
 
# Add u32 filter 
tc filter add dev $IN_DEV parent ffff: protocol ip prio 4 \ 
        handle 1: u32 divisor 1 
         
# EF traffic (port 6001) is policed and is marked 
tc filter add dev $IN_DEV parent ffff: protocol ip prio 4 u32 \ 
        match ip dport 6001 0xffff \ 
        police rate 3000kbit burst 90k \ 
        drop flowid 0xb8 
 
# AF in-profile traffic (port 6002) is marked as assured 
tc filter add dev $IN_DEV parent ffff: protocol ip prio 4 u32 \ 
        match ip dport 6002 0xffff \ 
        police rate 2500kbit burst 90K continue \ 
   flowid 0x28  
 
# AF out-of-profile traffic (port 6002) is marked as best-effort 
tc filter add dev $IN_DEV parent ffff: protocol ip prio 5 u32 \ 
 match ip dport 6002 0xffff \ 
 flowid 0x30 
 
# BE traffic is marked  
tc filter add dev $IN_DEV parent ffff: protocol ip prio 4 u32 \ 
        match ip dport 6003 0xffff \ 
        flowid 0x30    
             
./set-egress 
 
 
 
 
 

The script “set-switch-af” follows: 

#! /bin/sh 
# 
# use flag -x for echoeing commands 
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# 
# file: set-switch-af 
# 
 
IN_DEV=bridge 
OUT_DEV=eth0 
 
echo 
echo Setting diffserv for switch 
echo 
 
 
# All packets are marked with a DSCP in the tcindex field that is  
# going to be used on the egress side. 
# The value set is the whole TOS. DSCP is TOS shifted by two 
# AF11: 0x28 (TOS) = 0x0a (DSCP)  
# AF12: 0x30 (TOS) = 0x0c (DSCP)  
# AF13: 0x38 (TOS) = 0x0e (DSCP) 
 
 
# Install the ingress qdisc on the ingress interface 
tc qdisc add dev $IN_DEV handle ffff: ingress 
 
# Add u32 filter 
tc filter add dev $IN_DEV parent ffff: protocol ip prio 4 \ 
        handle 1: u32 divisor 1 
         
# AF11 traffic (port 6001) is marked 
tc filter add dev $IN_DEV parent ffff: protocol ip prio 4 u32 \ 
        match ip dport 6001 0xffff \ 
        police rate 3000kbit burst 90k \ 
        drop flowid 0x28 
 
# AF12 traffic (port 6002) is marked  
tc filter add dev $IN_DEV parent ffff: protocol ip prio 4 u32 \ 
        match ip dport 6002 0xffff \ 
 flowid 0x30 
 
# AF13 traffic (port 6003) is marked  
tc filter add dev $IN_DEV parent ffff: protocol ip prio 4 u32 \ 
        match ip dport 6003 0xffff \ 
        flowid 0x38    
             
./set-egress 
 
 
 

C.5 Scripts for the VLAN case 

 Having configured VLANs in the switch and the router of our domain, the scripts 

that set the DiffServ functionality in the switch and the router need to be adjusted. The 

following scripts do not filter traffic according to UDP destination port number; rather, 
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they classify traffic based on the VLAN ID of a packet. The scripts that configure 

premium, assured, and best-effort services are named “set-vlanswitch-all” for the switch 

and “set-vlanrouter2-all” for the router. The scripts that configure the olympic service are 

named “set-vlanswitch-af” for the switch and “set-vlanrouter2-af” for the router.  

 

The script “set-vlanswitch-all” follows: 

#! /bin/sh 
# 
# use flag -x for echoeing commands 
# 
# file: set-vlanswitch-all 
# 
 
IN_DEV1=bridge11 
IN_DEV2=bridge12 
IN_DEV3=bridge13 
 
 
echo 
echo Setting vlan diffserv for switch 
echo 
 
 
# All packets are marked with a DSCP in the tcindex field that is  
# going to be used on the egress side. 
# The value set is the whole TOS. DSCP is TOS shifted by two 
# EF  : 0xb8 (TOS) = 0x2e (DSCP) 
# AF11: 0x28 (TOS) = 0x0a (DSCP)  
# AF12: 0x30 (TOS) = 0x0c (DSCP) 
 
##############  VLAN 11 (EF)  ############## 
 
# Install the ingress qdisc on the ingress interface 
tc qdisc add dev $IN_DEV1 handle ffff: ingress 
 
# Add u32 filter 
tc filter add dev $IN_DEV1 parent ffff: protocol ip prio 4 \ 
        handle 1: u32 divisor 1 
         
# EF traffic (VLAN 11) is policed and is marked 
tc filter add dev $IN_DEV1 parent ffff: protocol ip prio 4 u32 \ 
 match ip dport 0xffff 0x0000 \ 
      police rate 3000kbit burst 90k drop \ 
 flowid 0xb8 
 
##############  VLAN 12 (AF)  ############## 
 
# Install the ingress qdisc on the ingress interface 
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tc qdisc add dev $IN_DEV2 handle ffff: ingress 
 
# Add u32 filter 
tc filter add dev $IN_DEV2 parent ffff: protocol ip prio 4 \ 
        handle 1: u32 divisor 1 
         
# AF in-profile traffic (VLAN 12) is marked as assured 
tc filter add dev $IN_DEV2 parent ffff: protocol ip prio 4 u32\ 
 match ip dport 0xffff 0x0000 \ 
      police rate 2500kbit burst 90K continue \ 
 flowid 0x28  
 
# AF out-of-profile traffic (VLAN 12) is marked as best-effort 
tc filter add dev $IN_DEV2 parent ffff: protocol ip prio 5 u32 \ 
 match ip dport 0xffff 0x0000 \ 
 flowid 0x30 
 
 
##############  VLAN 13 (BE)  ############## 
         
# Install the ingress qdisc on the ingress interface 
tc qdisc add dev $IN_DEV3 handle ffff: ingress 
 
# Add u32 filter 
tc filter add dev $IN_DEV3 parent ffff: protocol ip prio 4 \ 
        handle 1: u32 divisor 1 
                
# BE traffic (VLAN 13) is marked   
tc filter add dev $IN_DEV3 parent ffff: protocol ip prio 4 u32\ 
        match ip dport 0xffff 0x0000 \ 
        flowid 0x30 
 
./set-egress 
 
 
 
 
The script “set-vlanrouter2-all” follows: 

#! /bin/sh 
# 
# use flag -x for echoeing commands 
# 
# file: set-vlanrouter2-all 
# 
 
IN_DEV1=eth1.11 
IN_DEV2=eth1.12 
IN_DEV3=eth1.13 
 
 
echo 
echo Setting vlan diffserv for router2 
echo 
 
 



 

99 

# All packets are marked with a DSCP in the tcindex field that is  
# going to be used on the egress side. 
# The value set is the whole TOS. DSCP is TOS shifted by two 
# EF  : 0xb8 (TOS) = 0x2e (DSCP) 
# AF11: 0x28 (TOS) = 0x0a (DSCP)  
# AF12: 0x30 (TOS) = 0x0c (DSCP) 
 
##############  VLAN 11 (EF)  ############## 
 
# Install the ingress qdisc on the ingress interface 
tc qdisc add dev $IN_DEV1 handle ffff: ingress 
 
# Add u32 filter 
tc filter add dev $IN_DEV1 parent ffff: protocol ip prio 4 \ 
        handle 1: u32 divisor 1 
         
# EF traffic (VLAN 11) is policed and is marked 
tc filter add dev $IN_DEV1 parent ffff: protocol ip prio 4 u32 \ 
        match ip dport 0xffff 0x0000 \ 
        police rate 3000kbit burst 90k drop \ 
   flowid 0xb8 
 
##############  VLAN 12 (AF)  ############## 
 
# Install the ingress qdisc on the ingress interface 
tc qdisc add dev $IN_DEV2 handle ffff: ingress 
 
# Add u32 filter 
tc filter add dev $IN_DEV2 parent ffff: protocol ip prio 4 \ 
        handle 1: u32 divisor 1 
         
# AF in-profile traffic (VLAN 12) is marked as assured 
tc filter add dev $IN_DEV2 parent ffff: protocol ip prio 4 u32 \ 
        match ip dport 0xffff 0x0000 \ 
        police rate 2500kbit burst 90K continue \ 
   flowid 0x28  
 
# AF out-of-profile traffic (VLAN 12) is marked as best-effort 
tc filter add dev $IN_DEV2 parent ffff: protocol ip prio 5 u32 \ 
   match ip dport 0xffff 0x0000 \ 
   flowid 0x30 
 
##############  VLAN 13 (BE)  ############## 
         
# Install the ingress qdisc on the ingress interface 
tc qdisc add dev $IN_DEV3 handle ffff: ingress 
 
# Add u32 filter 
tc filter add dev $IN_DEV3 parent ffff: protocol ip prio 4 \ 
        handle 1: u32 divisor 1 
                
# BE traffic (VLAN 13) is marked   
tc filter add dev $IN_DEV3 parent ffff: protocol ip prio 4 u32 \ 
        match ip dport 0xffff 0x0000 \ 
        flowid 0x30 
 
./set-egress 
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The script “set-vlanswitch-af” follows: 

#! /bin/sh 
# 
# use flag -x for echoeing commands 
# 
# file: set-vlanswitch-af 
# 
 
IN_DEV1=bridge11 
IN_DEV2=bridge12 
IN_DEV3=bridge13 
 
 
echo 
echo Setting diffserv for vlanswitch 
echo 
 
 
# All packets are marked with a DSCP in the tcindex filed that is  
# going to be used on the egress side. 
# The value set is the whole TOS. DSCP is TOS shifted by two 
# AF11: 0x28 (TOS) = 0x0a (DSCP)  
# AF12: 0x30 (TOS) = 0x0c (DSCP)  
# AF13: 0x38 (TOS) = 0x0e (DSCP) 
 
##############  VLAN 11 (AF11)  ############## 
 
# Install the ingress qdisc on the ingress interface 
tc qdisc add dev $IN_DEV1 handle ffff: ingress 
 
# Add u32 filter 
tc filter add dev $IN_DEV1 parent ffff: protocol ip prio 4 \ 
        handle 1: u32 divisor 1 
         
# AF11 traffic (VLAN 11) is marked 
tc filter add dev $IN_DEV1 parent ffff: protocol ip prio 4 u32 \ 
 match ip dport 0xffff 0x0000 \ 
 flowid 0x28 
 
##############  VLAN 12 (AF12)  ############## 
 
# Install the ingress qdisc on the ingress interface 
tc qdisc add dev $IN_DEV2 handle ffff: ingress 
 
# Add u32 filter 
tc filter add dev $IN_DEV2 parent ffff: protocol ip prio 4 \ 
        handle 1: u32 divisor 1 
         
# AF12 traffic (VLAN 12) is marked  
tc filter add dev $IN_DEV2 parent ffff: protocol ip prio 4 u32\ 
 match ip dport 0xffff 0x0000 \ 
 flowid 0x30  
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##############  VLAN 13 (AF13)  ############## 
         
# Install the ingress qdisc on the ingress interface 
tc qdisc add dev $IN_DEV3 handle ffff: ingress 
 
# Add u32 filter 
tc filter add dev $IN_DEV3 parent ffff: protocol ip prio 4 \ 
        handle 1: u32 divisor 1 
                
# AF13 traffic (VLAN 13) is marked  
tc filter add dev $IN_DEV3 parent ffff: protocol ip prio 4 u32\ 
   match ip dport 0xffff 0x0000 \ 
        flowid 0x38 
 
 
./set-egress 
 
 
 

The script “set-vlanrouter2-af” follows: 

#! /bin/sh 
# 
# use flag -x for echoeing commands 
# 
# file: set-vlanrouter2-af 
# 
 
IN_DEV1=eth1.11 
IN_DEV2=eth1.12 
IN_DEV3=eth1.13 
 
 
echo 
echo Setting vlan diffserv for router2 
echo 
 
 
# All packets are marked with a DSCP in the tcindex filed that is  
# going to be used on the egress side. 
# The value set is the whole TOS. DSCP is TOS shifted by two 
# AF11: 0x28 (TOS) = 0x0a (DSCP)  
# AF12: 0x30 (TOS) = 0x0c (DSCP)  
# AF13: 0x38 (TOS) = 0x0e (DSCP) 
 
##############  VLAN 11 (AF11)  ############## 
 
# Install the ingress qdisc on the ingress interface 
tc qdisc add dev $IN_DEV1 handle ffff: ingress 
 
# Add u32 filter 
tc filter add dev $IN_DEV1 parent ffff: protocol ip prio 4 \ 
        handle 1: u32 divisor 1 
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# AF11 traffic (VLAN 11) is marked 
tc filter add dev $IN_DEV1 parent ffff: protocol ip prio 4 u32 \ 
        match ip dport 0xffff 0x0000 \ 
 flowid 0x28 
 
##############  VLAN 12 (AF12)  ############## 
 
# Install the ingress qdisc on the ingress interface 
tc qdisc add dev $IN_DEV2 handle ffff: ingress 
 
# Add u32 filter 
tc filter add dev $IN_DEV2 parent ffff: protocol ip prio 4 \ 
        handle 1: u32 divisor 1 
         
# AF12 traffic (VLAN 12) is marked  
tc filter add dev $IN_DEV2 parent ffff: protocol ip prio 4 u32 \ 
        match ip dport 0xffff 0x0000 \ 
 flowid 0x30 
 
##############  VLAN 13 (AF13)  ############## 
         
# Install the ingress qdisc on the ingress interface 
tc qdisc add dev $IN_DEV3 handle ffff: ingress 
 
# Add u32 filter 
tc filter add dev $IN_DEV3 parent ffff: protocol ip prio 4 \ 
        handle 1: u32 divisor 1 
                
# AF13 traffic (VLAN 13) is marked  
tc filter add dev $IN_DEV3 parent ffff: protocol ip prio 4 u32 \ 
        match ip dport 0xffff 0x0000 \ 
        flowid 0x38 
 
 
./set-egress 
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APPENDIX D – Automation scripts 

The experiments presented in Chapter 4 were conducted with the help of an 

automated procedure. The expect program, a tcl interpreter, was used to generate traffic 

flows, collect data, and present results. This program interprets tcl scripts that run shell 

programs that are inherent interactive. It interacts with the programs in a predefined 

manner, as described in the script it executes. Moreover, it can perform any other task 

that can be performed by a tcl program. The experiments that make use of the premium, 

assured, and best-effort services utilize the script “run-all,” whereas the experiments that 

make use of the olympic service utilize the script “run-af.” 

The process in both cases is essentially the same. The script first logs into the sink 

host using an ssh client. It cleans up of any old files and launches in the background three 

instances of the server side of the iperf program that will collect statistics for the three 

UDP flows. Then, it logs into each source host, using ssh again, and generates a UDP 

flow from each, launching the client side of the iperf program. The flows last for 

typically 30 seconds and when they are over, the script logs back into the server and 

collects statistics for this step. It then repeats the procedure from the beginning, 

performing the second step, which will typically differ from the last one in the generated 

flow rates. When all the steps are over, the script collects all data, makes all the necessary 

computations, and produces two sets of files. The first set is input for the xgraph 

program, which will be automatically executed by the script and display the plots with 

the results. The second set of files is in an excel format for further processing. 
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The script “run-all” follows: 

#!/usr/bin/expect -f 
# 
# file: run-all 
 
# runs an EF, an AF and a BE flow of X_RATE and for TIME (Mbps and 
secs) 
# for STEPS times, for TIME each. 
 
#puts $argc  
#set l [ llength $argv ]  
 
set EF_RATE [ lindex $argv 0 ]  
set AF_RATE [ lindex $argv 1 ]  
set BE_RATE [ lindex $argv 2 ]  
set STEPS   [ lindex $argv 3 ]  
 
set STEP    0.5 
set TIME    30 
 
# pause between every round 
set INTERVAL 4000 
 
set BE_RATE_BEGIN $BE_RATE  
set BE_RATE_END [expr $BE_RATE_BEGIN + ($STEPS*$STEP-$STEP) ] 
 
# script assumes you are logged as root 
 
#set seconds for expect to wait 
set timeout 120 
 
set PASS palamakia 
 
set CLIENT1_IP 192.168.10.11 
set CLIENT2_IP 192.168.10.12 
set CLIENT3_IP 192.168.10.13 
set SERVER_IP 192.168.0.10 
 
set EF_PORT 6001 
set AF_PORT 6002 
set BE_PORT 6003 
 
set P_SIZE 1000 
 
########################## Connect to Server and cleanup 
spawn ssh $SERVER_IP 
expect "password:" 
send "$PASS\r" 
 
expect "root]#" 
send "rm -f ef_bw\r" 
expect "root]#" 
send "rm -f ef_ls\r" 
expect "root]#" 
send "rm -f af_bw\r" 
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expect "root]#" 
send "rm -f af_ls\r" 
expect "root]#" 
send "rm -f be_bw\r" 
expect "root]#" 
send "rm -f be_ls\r" 
expect "root]#" 
send "logout\r" 
#expect "root]#" 
 
#################################### Run Sessions 
 
for {set x 0} {$x<$STEPS} {incr x} { 
 
########################## Connect to server 
spawn ssh $SERVER_IP 
#send "ssh $SERVER_IP\r" 
expect "password:" 
send "$PASS\r" 
 
expect "root]#" 
send "echo -n $BE_RATE >> ef_bw\r" 
expect "root]#" 
send "echo -n $BE_RATE >> ef_ls\r" 
expect "root]#" 
send "echo -n $BE_RATE >> af_bw\r" 
expect "root]#" 
send "echo -n $BE_RATE >> af_ls\r" 
expect "root]#" 
send "echo -n $BE_RATE >> be_bw\r" 
expect "root]#" 
send "echo -n $BE_RATE >> be_ls\r" 
expect "root]#" 
 
send "iperf -s -f m -p $EF_PORT -u -o 2 -r ef -l 1000 &\r" 
expect "root]#" 
send "iperf -s -f m -p $AF_PORT -u -o 2 -r af -l 1000 &\r" 
expect "root]#" 
send "iperf -s -f m -p $BE_PORT -u -o 2 -r be -l 1000 &\r" 
 
expect "root]#" 
send "logout\r" 
#expect "root]#" 
 
########################## Connect to Source1 - EF 
spawn ssh $CLIENT1_IP 
#send "ssh $CLIENT1_IP\r" 
expect "password:" 
send "$PASS\r" 
 
expect "root]#" 
send "iperf -c $SERVER_IP -b $EF_RATE\m -p $EF_PORT -l $P_SIZE -t $TIME 
&\r" 
expect "root]#" 
send "logout\r" 
#expect "root]#" 
 



 

106 

########################## Connect to Source2 - AF 
spawn ssh $CLIENT2_IP 
#send "ssh $CLIENT2_IP\r" 
expect "password:" 
send "$PASS\r" 
 
expect "root]#" 
send "iperf -c $SERVER_IP -b $AF_RATE\m -p $AF_PORT -l $P_SIZE -t $TIME 
&\r" 
expect "root]#" 
send "logout\r" 
#expect "root]#" 
 
########################## Connect to Source3 - BE 
spawn ssh $CLIENT3_IP 
#send "ssh $CLIENT3_IP\r" 
expect "password:" 
send "$PASS\r" 
 
expect "root]#" 
send "iperf -c $SERVER_IP -b $BE_RATE\m -p $BE_PORT -l $P_SIZE -t 
$TIME\r" 
expect "root]#" 
after $INTERVAL 
send "logout\r" 
 
set BE_RATE [expr $BE_RATE + $STEP] 
 
} 
 
########################## Connect to Server & get results 
 
spawn ssh -X $SERVER_IP 
expect "password:" 
send "$PASS\r" 
 
#### Create the excel files 
 
expect "root]#" 
after 8000 
 
send "join ef_bw af_bw > temp.xls\r" 
expect "root]#" 
send "join temp.xls be_bw > bw.xls\r" 
expect "root]#" 
send "join ef_ls af_ls > temp.xls\r" 
expect "root]#" 
send "join temp.xls be_ls > ls.xls\r" 
 
### Show throughput 
expect "root]#" 
send "rm -f graphfile1\r" 
send "cat ef_bw >> graphfile1\r" 
expect "root]#" 
send "echo  >> graphfile1\r" 
expect "root]#" 
send "cat af_bw >> graphfile1\r" 
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expect "root]#" 
send "echo  >> graphfile1\r" 
expect "root]#" 
send "cat be_bw >> graphfile1\r" 
expect "root]#" 
send "xgraph -ly 0,10 -0 \"EF traffic $EF_RATE Mbps\" \ 
        -1 \"AF traffic $AF_RATE Mbps\" -2 \"BE traffic $BE_RATE_BEGIN 
- $BE_RATE_END Mbps\" \ 
 -x Mbps -y Mbps \ 
        -t \"EF, AF, and BE traffic classes throughput\" graphfile1 
&\r" 
 
expect "root]#" 
 
after 2000 
 
send "rm -f graphfile2\r" 
 
### Show packet loss 
send "cat ef_ls >> graphfile2\r" 
expect "root]#" 
send "echo  >> graphfile2\r" 
expect "root]#" 
send "cat af_ls >> graphfile2\r" 
expect "root]#" 
send "echo  >> graphfile2\r" 
expect "root]#" 
send "cat be_ls >> graphfile2\r" 
expect "root]#" 
send "xgraph -ly 0,100 -0 \"EF traffic $EF_RATE Mbps\" \ 
        -1 \"AF traffic $AF_RATE Mbps\" -2 \"BE traffic $BE_RATE_BEGIN 
- $BE_RATE_END Mbps\" \ 
 -x Mbps -y %\ 
        -t \"EF, AF and BE packet loss\" graphfile2 &\r" 
 
expect "root]#" 
 
after 2000 
 
send "logout\r" 
 
interact 
 
 
 
 
The script “run-af” follows: 

#!/usr/bin/expect -f 
# 
# file: run-af 
 
# runs an AF11, an AF12 and an AF13 flow of AFX_RATE and for TIME (Mbps 
and secs) 
# for STEPS times, for TIME each. 
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#puts $argc  
#set l [ llength $argv ]  
 
set AF1_RATE [ lindex $argv 0 ]  
set AF2_RATE [ lindex $argv 1 ]  
set AF3_RATE [ lindex $argv 2 ]  
set STEPS   [ lindex $argv 3 ]  
 
set STEP    0.5 
set TIME    30 
 
# pause between every round 
set INTERVAL 4000 
 
set AF1_RATE_BEGIN $AF1_RATE  
set AF2_RATE_BEGIN $AF2_RATE  
set AF3_RATE_BEGIN $AF3_RATE  
 
set AF1_RATE_END [expr $AF1_RATE_BEGIN + ($STEPS*$STEP-$STEP) ] 
set AF2_RATE_END [expr $AF2_RATE_BEGIN + ($STEPS*$STEP-$STEP) ] 
set AF3_RATE_END [expr $AF3_RATE_BEGIN + ($STEPS*$STEP-$STEP) ] 
 
# script assumes you are logged as root 
 
#set seconds for expect to wait 
set timeout 120 
 
set PASS palamakia 
 
set CLIENT1_IP 192.168.10.11 
set CLIENT2_IP 192.168.10.12 
set CLIENT3_IP 192.168.10.13 
set SERVER_IP 192.168.0.10 
 
set AF1_PORT 6001 
set AF2_PORT 6002 
set AF3_PORT 6003 
 
set P_SIZE 1000 
 
########################## Connect to Server and cleanup 
spawn ssh $SERVER_IP 
expect "password:" 
send "$PASS\r" 
 
expect "root]#" 
send "rm -f af1_bw\r" 
expect "root]#" 
send "rm -f af1_ls\r" 
expect "root]#" 
send "rm -f af2_bw\r" 
expect "root]#" 
send "rm -f af2_ls\r" 
expect "root]#" 
send "rm -f af3_bw\r" 
expect "root]#" 
send "rm -f af3_ls\r" 
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expect "root]#" 
send "logout\r" 
 
#################################### Run Sessions 
 
 
for {set x 0} {$x<$STEPS} {incr x} { 
 
 
########################## Connect to server 
spawn ssh $SERVER_IP 
expect "password:" 
send "$PASS\r" 
 
expect "root]#" 
send "echo -n $AF1_RATE >> af1_bw\r" 
expect "root]#" 
send "echo -n $AF1_RATE >> af1_ls\r" 
expect "root]#" 
send "echo -n $AF2_RATE >> af2_bw\r" 
expect "root]#" 
send "echo -n $AF2_RATE >> af2_ls\r" 
expect "root]#" 
send "echo -n $AF3_RATE >> af3_bw\r" 
expect "root]#" 
send "echo -n $AF3_RATE >> af3_ls\r" 
expect "root]#" 
 
send "iperf -s -f m -p $AF1_PORT -u -i 1 -o 2 -r af1 &\r" 
expect "root]#" 
send "iperf -s -f m -p $AF2_PORT -u -i 1 -o 2 -r af2 &\r" 
expect "root]#" 
send "iperf -s -f m -p $AF3_PORT -u -i 1 -o 2 -r af3 &\r" 
 
expect "root]#" 
send "logout\r" 
 
########################## Connect to Source1 - EF 
spawn ssh $CLIENT1_IP 
expect "password:" 
send "$PASS\r" 
 
expect "root]#" 
send "iperf -c $SERVER_IP -b $AF1_RATE\m -p $AF1_PORT -l $P_SIZE -t 
$TIME &\r" 
expect "root]#" 
send "logout\r" 
 
########################## Connect to Source2 - AF 
spawn ssh $CLIENT2_IP 
expect "password:" 
send "$PASS\r" 
 
expect "root]#" 
send "iperf -c $SERVER_IP -b $AF2_RATE\m -p $AF2_PORT -l $P_SIZE -t 
$TIME &\r" 
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expect "root]#" 
send "logout\r" 
 
########################## Connect to Source3 - BE 
spawn ssh $CLIENT3_IP 
expect "password:" 
send "$PASS\r" 
 
expect "root]#" 
send "iperf -c $SERVER_IP -b $AF3_RATE\m -p $AF3_PORT -l $P_SIZE -t 
$TIME\r" 
expect "root]#" 
send "logout\r" 
 
set AF1_RATE [expr $AF1_RATE + $STEP] 
set AF2_RATE [expr $AF2_RATE + $STEP] 
set AF3_RATE [expr $AF3_RATE + $STEP] 
 
after $INTERVAL 
 
} 
 
########################## Connect to Server & get results 
 
spawn ssh -X $SERVER_IP 
expect "password:" 
send "$PASS\r" 
 
#### Create the excel files 
 
expect "root]#" 
after 8000 
 
send "join af1_bw af2_bw > temp.xls\r" 
expect "root]#" 
send "join temp.xls af3_bw > bw.xls\r" 
expect "root]#" 
send "join af1_ls af2_ls > temp.xls\r" 
expect "root]#" 
send "join temp.xls af3_ls > ls.xls\r" 
 
### Show throughput 
expect "root]#" 
send "rm -f graphfile1\r" 
send "cat af1_bw >> graphfile1\r" 
expect "root]#" 
send "echo  >> graphfile1\r" 
expect "root]#" 
send "cat af2_bw >> graphfile1\r" 
expect "root]#" 
send "echo  >> graphfile1\r" 
expect "root]#" 
send "cat af3_bw >> graphfile1\r" 
expect "root]#" 
send "xgraph -ly 0,10 -0 \"AF11 traffic $AF1_RATE_BEGIN - $AF1_RATE_END 
Mbps\" \ 
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        -1 \"AF12 traffic $AF2_RATE_BEGIN - $AF2_RATE_END Mbps\" -2 
\"AF13 traffic $AF3_RATE_BEGIN - $AF3_RATE_END Mbps\" \ 
 -x Mbps -y Mbps \ 
        -t \"AF11, AF12 and AF13 throughput\" graphfile1 &\r" 
 
expect "root]#" 
 
#after 8000 
 
send "rm -f graphfile2\r" 
 
### Show packet loss 
send "cat af1_ls >> graphfile2\r" 
expect "root]#" 
send "echo  >> graphfile2\r" 
expect "root]#" 
send "cat af2_ls >> graphfile2\r" 
expect "root]#" 
send "echo  >> graphfile2\r" 
expect "root]#" 
send "cat af3_ls >> graphfile2\r" 
expect "root]#" 
send "xgraph -ly 0,100 -0 \"AF11 traffic $AF1_RATE_BEGIN - 
$AF1_RATE_END Mbps\" \ 
        -1 \"AF12 traffic $AF2_RATE_BEGIN - $AF2_RATE_END Mbps\" -2 
\"AF13 traffic $AF3_RATE_BEGIN - $AF3_RATE_END Mbps\" \ 
 -x Mbps -y %\ 
        -t \"AF11, AF12 and AF13 packet loss\" graphfile2 &\r" 
 
expect "root]#" 
 
after 2000 
 
send "logout\r" 
 
interact 
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