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Abstract

In this paper, we study the Assured Service model pro-
posed by Clark and Wroclawski [3, 4]. While existing
schemes use service profiles that are defined in terms of ab-
solute bandwidth, it is difficult, if not impossible, to design
provisioning algorithms that achieve simultaneously good
service quality and high resource utilization for such ser-
vices with large spatial granularities.

We propose an Assured Service model, called LIRA (Lo-
cation Independent Resource Accounting), in which ser-
vice profiles are defined in units of resource tokens, rather
than absolute bandwidth. The number of resource tokens
charged for each in-profile packet is a dynamic function of
the path it traverses and the congestion level. Defining ser-
vice profile in terms of resource tokens allows more dynamic
and flexible network control algorithms that can simultane-
ously achieve high utilization and ensure high probability
delivery of in-profile packets. We present an integrated set
of algorithms that implement the model. Specifically, we
leverage the existing routing infrastructure to distribute the
path costs to all edge nodes. Since the path cost reflects the
congestion level along the path, we use this cost to design
dynamic routing and load balancing algorithms. To avoid
packet re-ordering within a flow, we devise a lightweight
mechanism that binds a flow to a route so that all packets
from the flow will traverse the same route. To reduce route
oscillation, we probabilistically bind a flow to one of the
multiple routes. Simulation results are presented to demon-
strate the effectiveness of the approach.
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tained in this document are those of the authors and should no be inter-
preted as representing the official policies, either expressed or implied, of
DARPA, NSF, Intel, MCI, Sun, or the U.S. government.

1 Introduction

As the Internet evolves into a global commercial infras-
tructure, there is a growing need to support more enhanced
services than the traditional best-effort service. To address
this issue, several new QoS models (guaranteed, controlled
load, committed rate) have been proposed [26, 31]. Collec-
tively, they are called Integrated Services or Intserv models.
Recently, there are new efforts in the IETF to develop a new
class of service models called Differential Services or Diff-
serv models [2, 3, 4, 17, 22, 29].

While these schemes differ in details, they are very sim-
ilar at the architectural level. Usually a scheme consists
of the following components: (a) a service profile between
each customer (user) and the Internet Service Provider (ISP)
that defines the commitment of the ISP to the user, (b)
ingress nodes at the ISP edge which police the aggregate
traffic from each user to make sure that no user exceeds its
service profile, (c) network nodes inside the ISP core which
implement a variety of packet forwarding, buffer manage-
ment, and scheduling behaviors in order to control packet
queueing delay, loss, and/or throughput, and (d) a set of bits
in the header of each packet used to trigger mechanism for
differential processing inside the network. Usually, there
are two types of bits. The first type specifies the differential
processing behavior requested by the user, such as drop or
delay preference. These bits are not modified by the routers.
The second type of bits can be changed by routers and en-
codes the dynamic information. An example is the bit that
encodes whether the packet is in or out of the service profile.

The key difference between Intserv and Diffserv is that
while Intserv provides end-to-end QoS service on a per flow
basis, Diffserv is intended to provide service differentia-
tion among the traffic aggregates to different users over a
long timescale. Such difference at the service level has im-
portant implications on the complexity of the network-level
mechanisms required to implement these services. In par-
ticular, to provide Intserv, each router needs to support a
flow level signaling protocol such as RSVP [32], maintain
per flow state, and perform scheduling and manage buffers
on a per flow basis. Since there can be a large number of



flows in the Internet, it is an open question whether Intserv
can be implemented in a scalable fashion. Diffserv, on the
other hand, pushes the complexity to the network edge, and
requires very simple priority scheduling/dropping mecha-
nisms inside the core. An important property of the Diffserv
schemes considered in this paper is that each router treats
identically all packets which have the same bits set. That
is, routers only distinguish a small number of aggregated
classes of packets, where a class represents all packets with
the same marking.

Existing Diffserv schemes are based on the concept of
service profile. From the service’s point of view, there are
three aspects that a Diffserv model needs to specify [3, 4]:

¢ semantics of the service profile: what exactly is pro-
vided to the customer (user)?

o spatial granularity of the service: is the service pro-
file applied to traffic destined to a single destination,
a group of destinations, all nodes of an ISP, or every-
where in the Internet?

o level of assurance: how likely is an in-profile packet to
be delivered to the destination?

Two examples of differential service models are the As-
sured Service proposed by Clark and Wroclawski [3, 4] and
the Premium Service proposed by Jacobson et. al [22]. The
Premium Service provides the equivalent of a dedicated link
of fixed bandwidth between two edge nodes. The main ad-
vantage of the Premium Service over the current Intserv
models such as guaranteed or controlled load is its imple-
mentation simplicity — it does not require per flow manage-
ment at core routers.

The Assured Service supports coarse spatial granularity,
i.e., service profiles are applied to traffic defined to more
than one destination. It is important to notice that in addi-
tion to the implementation simplicity, the Assured Service
also provides a service semantic that is richer than those
provided by the existing Intserv models. For example, while
Intserv and Premium services are better suited for steady
and long-lived traffic, the Assured Service provides better
support for traffic aggregates that consist of many short-
lived bursty flows with different destinations (such as WEB
traffic).

We believe that a service model with a coarse spatial
granularity embodies some of the fundamental motivations
behind the design of the Assured Service. The coarse spa-
tial granularity leads to a smaller number of service pro-
files, which in turn improves the scalability by reducing the
amount of state needed at the edge of the network. In addi-
tion, service profiles with coarser spatial granularities also
mean higher traffic aggregation for each profile, which al-
lows users to achieve a higher degree of statistical multi-
plexing gain.

However, as the spatial granularity becomes larger than
one destination, it is more difficult to support a service with
a fixed bandwidth profile. In this situation, there is a fun-
damental conflict between maximizing resource utilization
and achieving a high service assurance. Since the network
does not know in advance where the packets will go, in or-
der to provide high service assurance, it needs to provision
enough resources to all possible destinations. This will re-
sultin a severe resource under-utilization.

In this paper, we show that by defining service profiles in
terms of the amount of resource tokens rather than the ab-
solute bandwidth, we can design dynamic and flexible net-
work control algorithms that can achieve high resource uti-
lization, while at the same time delivering in-profile packets
with high probability. The key aspect of the model is that
the service differentiation is based on resource tokens rather
than the exact amount of bits per second. The amount of re-
source tokens charged for each bit is a dynamic function of
the path and the congestion level. This avoids the worst-
case provisioning dilemma faced by existing solutions. In
addition, as we will discuss in Section 4, our scheme can
also be used to implement differential services with service
profiles defined in terms of absolute bandwidth.

The rest of the paper is organized as follows. In Section 2
describes our model based on resource tokens and proposes
a set of mechanisms to implement the model. Section 3
presents simulation experiments to demonstrate the effec-
tiveness of our solution. Section 4 justifies the new service
model and discusses possible ways for our scheme to imple-
ment other differential service models. Finally, in Section 5
we present the related work, and in Section 6 we summarize
our contributions.

2 LIRA: Service Differentiation based on Re-
source Right Tokens

In this section, we present our differential service model,
called LIRA (Location Independent Resource Accounting),
with service profiles defined in terms of resource tokens
rather than absolute amounts of bandwidth.

We consider the following simple two bits encoding
scheme. The first bit, called the preferred bit, is set by the
application or user and indicates the dropping preference of
the packet. The second bit, called marking bit, is set by the
ingress routers of an ISP and indicates whether the packet
is in- or out-of profile. More precisely, when a preferred
packet arrives at an ingress node, the node marks it if the
user has not exceeded its profile; otherwise the packet is
left unmarked®. The reason to use two bits instead of one is
that in an Internet environment with multiple ISPs, even if
a packet may be out-of profile in some ISPs on the earlier
portion of its path, it may still be in-profile in a subsequent

Ln the paper, we will use the terminology of marked or unmarked pack-
ets to refer to packets in or out-of the service profile, respectively.



ISP. Having a dropping bit that is unchanged by upstream
ISPs on the path will allow downstream ISPs to make the
correct decision. Core routers implement a simple behavior
of priority dropping. Whenever there is a congestion, a core
router always drops unmarked packets first.

In this paper, we focus on mechanisms for implementing
LIRA in a single ISP. We assume the following model for
the interaction of multiple ISPs: if ISP A is using the service
of ISP B, then ISP B will treat ISP A just like a regular user.
In particular, the traffic from all ISP A’s users will be treated
as a single traffic aggregate.

21 LIRA ServiceMode

With LIRA, each user i is assigned a service profile that
is characterized by a resource token bucket (r;, b;), where
r; represents the resource token rate, and b; represents the
depth of the bucket. Unlike traditional token buckets where
each preferred bit entering the network consumes exactly
one token, with resource token buckets the number of to-
kens needed to admit a preferred bit is a dynamic function
of the path it traverses.

Although there are many functions that can be used, we
consider a simple case in which each link i is associated a
cost, denoted ¢; (¢), which represents the amount of resource
tokens charged for sending a marked bit along the link at
time ¢. The cost of sending a marked packet is computed
as ) ;ep L x ci(t), where L is the packet length and P is
the set of links traversed by the packet. While we focus on
unicast communications in this paper, we note that the cost
function is also naturally applicable to the case of multicast.
As we will show in Section 3, charging a user for every
link it uses and using the cost in routing decisions help to
increase the network throughput. In fact, it has been shown
in [19] that using a similar cost function? for performing
the shortest path routing gives the best overall results when
compared with other dynamic routing algorithms.

It is important to note that the costs used in this paper are
not monetary in nature. Instead they are reflecting the level
of congestion and the resource usage along links/paths. This
is different from pricing which represents the amount of
payment made by an individual user. Though costs can pro-
vide valuable input to pricing policies, in general, there is
no necessary direct connection between cost and price.

Figure 1 illustrates the algorithm performed by ingress
nodes. When a preferred packet arrives at an ingress node,
the node computes its cost based on the packet length and
the path it traverses. If the user has enough resource to-
kens in its bucket to cover this cost, the packet is marked,
admitted in the network, and the corresponding number of
resource tokens is subtracted from the bucket account. Oth-
erwise, depending on the policy, the packet can be either

21t can be shown that when all links have the same capacity our cost
is within a constant factor from the cost of shortest-dist(P, 1) algorithm
proposed in [19].

dropped, or treated as best effort. Informally, our goal at
the user level is to ensure that users with “similar” com-
munication patterns receive service (in terms of aggregate
marked traffic) in proportion to their token rates.

The crux of the problem then is the computation and dis-
tribution of the per marked bit cost for each path. In this
section, we first present the algorithm to compute the cost
of each marked bit for a single link, and next present an
algorithm that computes and distributes the per-path cost
of one marked bit by leveraging existing routing protocols.
We then argue that this dynamic cost information is also
useful for multi-path routing and load balancing purposes.
To avoid route oscillation and packet reordering within one
application-level flow, we introduce two techniques. First,
a lightweight scheme is devised to ensure that all packets
from the same application-level flow always travel the same
path. The scheme is lightweight in the sense that no per
flow state is needed in any core routers. Second, rather than
using a simple greedy algorithm that always selects the path
with the current lowest cost, we use a probabilistic scheme
to enhance system stability.

2.2 Link Cost Computation

A natural goal in designing the link cost function in LIRA
is to avoid marked packets being dropped. Since in the
worst case all users can compete for the same link at the
same time, a sufficient condition is to have a cost func-
tion that exceeds the number of tokens in the system when
the link utilization approaches unity. Without bounding the
number of tokens in the system, this suggests a cost function
that goes to infinity when the link utilization approaches
unity. Among many possible cost functions that exhibit this
property, we choose the following one:

a

)= Ty 1)

where « is the fixed cost of using the link3 when it is idle,
and u(t) represents the link utilization at time ¢. In partic-
ular, u(t) = R(t)/C, were R(t) is the traffic throughput at
time ¢, and C' represents the link capacity. Recall that ¢(t)
is measured in tokens/bit and represents how much a user is
charged for sending a marked bit along that link at time ¢.
In an ideal system, where costs are instantaneously dis-
tributed and the rate of the incoming traffic varies slowly,
a cost function as defined by Eq. (1) guarantees that no
marked packets are dropped inside the core. However, in
a real system, computing and distributing the cost informa-
tion incur overhead, so they are usually done periodically.
In addition, there is always the issue of propagation delay.
Because of these, the cost information used in admitting
packets at ingress nodes may be obsolete. This may cause

3In practice, the network administrator can make use of a to encour-
age/discourage the use of the link. Simply by changing the fixed cost a, a
link will cost proportionally more or less at the same utilization.



r = resource token rate
| = current bucket level
ci = per hit cost of linki
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upon packet arrival :
bit_cost=c1 +c2 +c3 + c4 + c5;
packet_cost = packet_length * bit_cost;
if (preferred(packet) && | > packet_cost
mark(packet);
| —= packet_cost;

Figure 1. When a preferred packet arrives, the node computes the packet’s cost, and the packet is

marked if there are sufficient resource tokens.

packet dropping, and lead to oscillations. Though oscilla-
tions are inherent to any system in which the propagation
of the feed-back information is non-zero, the sensitivity of
our cost function when the link utilization approaches unity
makes things worse. In this regime, an incrementally small
traffic change may result in an arbitrary large cost change.
In fact one may note that Eq. (1) is similar to the equa-
tion describing the delay behavior in queueing systems [18],
which is known to lead to system instability when used as a
congestion indication in a heavily loaded system.

To address these issues, we use the following iterative
formula to compute the link cost:

R(ti ti1)
—c @)

where R(t’,t") denotes the average bit rate of the marked
traffic during the time interval [¢/, ¢"'). Itis easy to see that if
the marked traffic rate is constant and equal to R, the above
iteration converges to the cost given by Eq. (1). The main
advantage of using Eq. (2) over Eq. (1) is that it is more
robust against large variations in the link utilization. In par-
ticular, when the link utilization approaches unity the cost
increases by at most @ every iteration. In addition, unlike
Eg. (1), Eq. (2) is well defined even when the link is con-
gested, i.e., R(ti—1,t;) = C.

Unfortunately, computing the cost by using Eq. (2) is not
as accurate as by using Eq. (1). The link may become and
remain congested for a long time before the cost increases
large enough to reduce the arrival rate of marked bits. This
may result in the loss of marked packets, which we try to
avoid. To address this problem we use only a fraction of the
link capacity, C = BC, for the marked traffic, the remain-
ing being used to absorb the unexpected variations due to
inaccuracies in the cost estimation®. In this paper we chose
3 between 0.85 and 0.9.

43 is similar to the pressure factor used in some ABR congestion con-
trol schemes for estimating the fair share [14, 25].

e(ti) = a+ c(ti=1)

2.3 Path Cost Computation and Distribution

In LIRA, the cost of a marked bit over a path is the sum
of the costs of a marked bit over each link on the path. Once
the cost for each link is computed, it is easy to compute and
distribute the path cost by leveraging existing routing proto-
cols. For link state algorithms, the cost of each marked bit
can be included as part of the link state. For distance vector
algorithms, we can pass and compute the partial path cost
in the same way the distance of a partial path is computed
with respect to the routing metric.

24 Multipath Routing and Load Balancing

Since our algorithm defines a dynamic cost function that
reflects the congestion level of each link, it is natural to use
this cost function for the purpose of multi-path routing. In
this paper, we compute the & shortest paths for each des-
tination or egress node using unit link metric. While the
obvious solution is to send packets along the path with the
minimum cost (in the sense of LIRA, see Section 2.1) among
the k paths, this may introduce two problems: (a) packet re-
ordering within one application-level flow, which may neg-
atively affect end-to-end congestion control algorithms, and
(b) route oscillation, which may lead to system instability.

We introduce two techniques to address these problems.
First, we present a lightweight mechanism that binds a flow
to a route so that all packets from the flow will traverse the
same route. Second, to reduce route oscillation, for each
new flow, an ingress node probabilistically binds it to one of
the multiple routes. By carefully selecting the probability,
we can achieve both stability and load-balancing.

24.1 Forwarding Algorithm For Multiple Path Rout-
ing

As discussed earlier, we will maintain multiple routes for

each destination. However, we would like to ensure that all
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Figure 2. Example of route binding via packet labeling.

packets belonging to the same flow are forwarded along the
same path.

The basic idea is to associate with each path a label com-
puted as the XOR over the identifiers of all routers along the
path, and then associate this label with each packet of a flow
that goes along that path. Here we use the IP address as the
identifier. More precisely, a path P = (idg, idy, . .., id,),
where id is the source and id,, is the destination, is en-
coded at the source (idp) by Iy = id) ® ids ® ... ® idy,.
Similarly, the path from id; to id, is encoded at id; by
ly = idy ® ... ® id,. A packet that travels along path P
is labeled with [, as it is leaving idy, and with /; as it is
leaving d;. By using XOR we can iteratively re-compute
the label based on the packet’s current label and the node
identifier. As an example, consider a packet that is assigned
label I, at node idy. When the packet arrives at node id,
the new label corresponding to the remaining of the path,
(idy, ..., 1idy,), is computed as follows:

l

id; @ (Id1 ®ida® ... Qidy) = ida ® ... ® idy.

It is easy to see that this scheme guarantees that the packet
will be forwarded exactly along the path P. Here, we im-
plicitly assume that all alternate paths between two end-
nodes have unique labels. Although theoretically there is
a non-zero probability that two labels may collide, we be-
lieve that for practical purposes it can be neglected.

Next we give some details of how this mechanism can
be implemented by simply extending the information main-
tained by each router in the routing and forwarding tables.

Besides the destination and the route cost, each entry in
the routing table also contains the label associated with that

path.
< dst, < costM 1V > < cost(k),l(k)) >>

(4)

Similarly, the forwarding table should contain an entry for
each path:

< 1M dst,next_hop™ > .. < 1) dst, next_hop*) > (5)

In Figure 2 we give a simple example to illustrate this
mechanism. Assume that nodes id; and ids are edge nodes,
and there are two possible paths from id; to ids of costs
7, and 8, respectively. Now, assume a packet destined to
ids arrives at id;. First the ingress node id; searches the
classifier table (not shown in the Figure), that maintains a
list of all flows, to see whether this is the first packet of a
flow. If it is, the router uses the information in the routing
table to probabilistically bind the flow to a path to id5. At
the same time it labels the packet with the encoding of the
selected route. In our example, assume the path of cost 7,
i.e., (idy,ids, ids, ids), is selected. If the arriving packet
is not the first packet of the flow, the router automatically
labels the packet with the encoding of the path to which the
flow is bound. This can be simply achieved by keeping a
copy of the label in the classifier table. Once the packet is
labeled, the router checks the forwarding table for the next
hop by matching the packet’s label and its destination. In
our case, this operation gives us id» as the next hop. When
the packet arrives at node id- the router first computes a
new label based on the current packet label and the router



identifier: label = ids @ label. The new label is then used
to lookup the forwarding table.

It is important to note that the above algorithm assumes
per flow state only at ingress nodes. Inside the core, there
is no per flow state. Moreover, the labels can speed-up the
table lookup if used as hash keys.

2.4.2 Path Sdlection

While the above forwarding algorithm ensures that all pack-
ets belonging to the same flow traverse the same path, there
is still the issue of how to select a path for a new flow. The
biggest concern with any dynamic routing protocol based
on congestion information is its stability. Frequent route
changes may lead to oscillations.

To address this problem, we associate a probability with
each route and use it in binding a new flow to that route.
The goal in computing this probability is to equalize the
costs along the alternate routes, if possible. For this we use
a greedy algorithm. Every time the route costs are updated
we split the set of routes in two equal sets, where all the
routes in one set have costs larger than the routes in the
second set. If there is an odd number of routes, we leave
the median out. Then, we decrease the probability of ev-
ery route in the first set, the one which contains the higher
cost routes, and increase the probability of each route in the
second set by a small constant 4. It can be shown that in a
steady-state system, this algorithm converges to the optimal
solution within 4.

25 Algorithm Scalability

As described so far, our scheme requires to maintain &
entries for each destination in both the forwarding table
used by the forwarding engine and the routing table used
by the routing protocol, where % is the maximum number
of alternate paths. While this factor may not be significant
if £ is small, a more serious issue that potentially limits
the scalability of the algorithm is that in the vanilla form
it requires to maintain an entry for each destination, where
in reality, to achieve scalability, routers really maintain the
longest-prefix of a group of destinations that share the same
route [11]. Since our algorithm works in the context of one
ISP, we can maintain an entry for each egress node instead
of each destination. We believe this is sufficient as the num-
ber of egress nodes in an ISP is usually not large.

However, assume that the number of egress nodes in
an ISP is very large so that significant address aggrega-
tion is needed. Then we need to also perform cost ag-
gregation. To illustrate the problem consider the exam-
ple in Figure 3. Assume the addresses of dy and d; are
aggregated at an intermediate router ;. Now the ques-
tion is how much to charge a packet that enters at the
ingress node o and has the destination dy. Since we do

Figure 3. Topology to illustrate the label and
cost aggregation.

not keep state for the individual routes to dg, and d; re-
spectively, we need to aggregate the cost to these two des-
tinations. In doing this, a natural goal would be to main-
tain the total charges the same as in a reference system
that keeps per route state. Let R(r1,d;) denote the aver-
age traffic rate from r, to d;, i = 1,2. Then, in the refer-
ence system that maintains per route state, the total charge
per time unit for the aggregate traffic from »; to dg and d;
is: cost(ry, do) R(r1, do) + cost(r1,d1)R(r1,d1). Inasys-
tem that does not maintain per route state, the charge for
the same traffic is cost(r1, do, d1)(R(r1,do) + R(r1,d1)),
where cost(r1, dy, d1) denotes the per bit aggregate cost.
This yields

cost(r1,do, dy) = COSt(“’dO)R(“’dO))Jr (6)
)

R(Tl, do) —|— R(T’l, d1
cost(ry,d1)R(r1, d1
R(Tl, do) —|— R(T’l, dl) ’

Thus, any packet that arrives at o and has either destination
dg or dy is charged with cost(rq, 71) + cost(r1, dg, d1). Ob-
viously, route aggregation increases the inaccuracies in cost
estimation. However, this may be alleviated by the fact that
the route aggregation usually exhibits high localities.

Another problem with address aggregation is that a label
can no longer be used to encode the entire path to the desti-
nation. Instead, it is used to encode the common portion of
the paths to the destinations in the aggregate set. This means
that a packet should be relabeled at every router that per-
forms aggregation involving the packet’s destination. The
most serious concern with this scheme is that it requires to
maintain per flow state and perform packet classification at
a core router (r1 in our example). Fortunately, this scalabil-
ity problem is alleviated by the fact that we need to keep per
flow state only for the flows whose destination addresses are
aggregated at the current router. Finally, we note that this
problem is not specific to our scheme; any scheme that (i)
allows multiple path routing, (ii) performs load balancing,
and (iii) avoids packet reordering has to address it.

3 Simulation Experiments

In this section we evaluate our model by simulation. We
conduct four experiments: three involving simple topolo-
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Figure 4. (a) Topology used in the first experiment. Each link has 10 Mbps capacity. S1, 52, and S3
send all their traffic to D1. (b) The throughputs of the three users under BASE and STATIC schemes.
(c) The throughputs under STATIC when the token rate of S2 is twice the rate of 51/52.

gies which help to gain a better understanding of the be-
havior of our algorithms, and one more realistic example
with a larger topology and more complex traffic patterns.
The first experiment shows that if all users share the same
congested path, then each user receives service in propor-
tion to its resource token rate. This is the same result one
would expect from using a weighted fair queueing sched-
uler on every link, with the weights set to the users’ token
rate. In the second experiment, we show that by using dy-
namic routing and load balancing, we are able to achieve
the same result — that is, each user to receive service in pro-
portion to its token rate — in a more general configuration
where simply using weighted fair queueing scheduler on ev-
ery link is not sufficient. In the third experiment, we show
how load balancing can significantly increase the overall re-
source utilization. Finally, the fourth experiment shows how
the behaviors observed in the previous experiments scale to
a larger topology.

3.1 Experiment Design

We have implemented a packet level simulator which
supports both Distance Vector (DV) and Shortest Path First
(SPF) routing algorithms. To support load balancing we ex-
tended these algorithms to compute the k-th shortest paths.
The time interval between two route updates is uniformly
distributed between 0.5 and 1.5 of the average value. As
shown in [10] this choice avoids the route-update self-
synchronization. In SPF, when a node receives a routing
message, it first updates its routing table and then forwards
the message to all its neighbors, excepting the sender. The
routing messages are assumed to have high priority, so they
are never lost. In the followings we compare the following
schemes:

e BASE - this scheme models today’s best-effort Inter-
net, and it is used as a baseline in our comparison. The

routing protocol uses the number of hops as the dis-
tance metric and it is implemented by either DV or
SPF. This scheme does not implement service differ-
entiation, i.e., both marked and unmarked packets are
identically treated.

e STATIC - this scheme implements the same static
routing as BASE. In addition, it implements LIRA by
computing the link cost as described in Section 2.2,
and marking packets at each ingress node according to
the algorithm shown in Figure 1.

¢ DYNAMIC-£ — this scheme adds dynamic routing and
load balancing to STATIC. The routing protocol uses a
modified versions of DV/SPF to find the first & short-
est paths. Note that DYNAMIC-1 is equivalent to
STATIC.

Each router implements a FIFO scheduling discipline
with a shared buffer and a drop-tail management scheme.
When the buffer occupancy exceeds a predefined threshold,
newly arrived unmarked packets are dropped. Thus, the en-
tire buffer space from the threshold up to its total size is
reserved to the in-profile traffic®. Unless otherwise speci-
fied, throughout all our experiments we use a buffer size of
256 KB and a threshold of 64 KB.

The two main performance indices that we use in com-
paring the above schemes are the user in-profile and user
overall throughputs. The user in-profile throughput repre-

5We note that this scheme is a simplified version of the RIO buffer
management scheme proposed by Clark and Wroclawski [4]. In addition,
RIO implements a Random Early Detection (RED) [9] dropping policy,
instead of drop-tail, for both in- and out-of profile traffic. RED provide an
efficient detection mechanism for the adaptive flows, such as TCP, allowing
them to gracefully degrade their performances when congestion occurs.
However, since in this study we are not concerned with the behavior of
individual flows, for simplicity we chose to not implement RED.
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Figure 5. (a) Topology used in the second experiment. S1, 52, 53, and S4 send all their traffic to D1,
D2, and D3, respectively. (b) The throughputs of all users under BASE, STATIC, and DYNAMIC-2.

sents the rate of the user aggregate in-profile traffic deliv-
ered to its destinations. The overall throughput represents
the user’s entire traffic — i.e., including both the in- and
out-of profile traffic — delivered to its destinations. In ad-
dition, we use user dropping rate of the in-profile traffic to
characterize the level of service assurance.

Recent studies have shown that the traffic in real net-
works exhibits the self-similar property [5, 23, 24, 30] —
that is, the traffic is bursty over widely different time scales.
To generate self-similar traffic we use the technique origi-
nally proposed in [30], where it was shown that the super-
position of many ON-OFF flows with ON and OFF periods
drawn from a heavy tail distribution, and which have fixed
rates during the ON period results in self-similar traffic. In
particular, in [30] it is shown that the aggregation of several
hundred of ON-OFF flows is a reasonable approximation of
the real end-to-end traffic observed ina LAN.

In all our experiments, we generate the traffic by draw-
ing the length of the ON and OFF periods from a Pareto
distribution with the power factor of 1.2. During the ON
period a source sends packets with sizes between 100 bytes
and 1000 bytes. The time to send a packet of minimum
size during the ON period is assumed to be the time unit in
computing the length of the ON and OFF intervals.

Due to the high overhead incurred by a packet-level sim-
ulator, such as ours, we limit the link capacities to 10 Mbps
and the simulation time to 200 sec. We set the average inter-
val between routing updates to 5 sec for the small topologies
used in the first three experiments, and to 3 sec for the large
topology used in the last experiment. In all experiments,
the traffic starts at time ¢ = 20 sec. The choice of this time
is such that to guarantee that the routing algorithm finds at
least one path between any two nodes by time ¢. In order to
eliminate the transient behavior, we start our measurements

at time ¢ = 50 sec.

3.2 Local Fairness and Service Differentiation

This experiment shows that if all users send their traffic
along the same congested path, they get service in propor-
tion to their token rate, as long as there is enough demand.
Consider the topology in Figure 4(a), where users S1, S2,
and S3 send traffic to D1. Figure 4(b) shows the user over-
all throughputs over the entire simulation under BASE. As
it can be seen, S1 gets significantly more than the other
two. In fact, if the traffic from all sources were continuously
backlogged, we expect that S1 to get half of the congested
links 5 and 6, while S2 and S3 to split the other half. This
is because even though each user sends at an average rate
higher than 10 Mbs, the queues are not continuously back-
logged. This is due to the bursty nature of the traffic and
due to the limited buffer space at each router.

Next, we run the same simulation for the STATIC
scheme. To each user we assign the same token rate, and
to each link we associate the same fixed cost. Figure 4(b)
shows the user overall and in-profile throughputs. Com-
pared to BASE, the overall throughputs are more evenly
distributed. However, the user S1 still gets slightly better
service, i.e., its in-profile throughput is 3.12 Mbps, while
the in-profile throughput of S2/53 is 2.75 Mbps. To see
why, recall from Eq. (1) that link cost accurately reflects the
level of congestion on that link. Consequently, in this case
links 5 and 6 will have the highest cost, followed by link
4, and then the other three links. Thus, S2 and S3 have to
“pay” more than S1 per marked bit. Since all users have the
same token rates, this translates into lower overall through-
puts for 52 and S3, respectively.

To illustrate the relationship between the user’s token
rate and its performance, we double the token rate of S2.
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Figure 6. (a) Topology used in the third experiment. Mean throughputs when (b) load is balanced,
and (c) when it is unbalanced, i.e, S3 and S4 are inactive.

Figure 4(c) shows the overall and in-profile throughputs of
each user. In terms of in-profile traffic user S2 gets roughly
twice the throughout of S3 (i.e., 4.27 Mbps vs. 2.18 Mbps).
Finally, we note that there was no marked packets
dropped in any of the above simulations. For comparison
more than 60 % of the out-of profile traffic was dropped.

3.3 User Fairnessand Load Balancing

In this section we show how dynamic routing and load
balancing help to improve user level fairness and achieve
better resource utilization. Consider the topology in Fig-
ure 5 where users S1, 2, S3 and S4 send traffic to users
D1, D2 and D3. Again the fixed costs of all links are equal,
and all users are assigned the same token rate.

Figure 5(b) shows the overall and in-profile through-
puts of S1, S2, S3 and S4 under BASE, STATIC and
DYNAMIC-2, respectively. When BASE and STATIC are
used, each user sends always along the shortest paths. This
results in S1, S2 and S3 sharing link 1, while S4 using
alone link 3. As a consequence S4 receives significantly
better service than the other three users. Since it imple-
ments the same routing algorithm, STATIC does not im-
prove the overall throughputs. However, compared with
BASE, STATIC guarantees that in-profile packets are deliv-
ered with very high probability (again, in this experiment,
no marked packets were dropped). On the other hand, when
DYNAMIC-2 is used each user receives almost the same
service. This is because, now users S1, S2 and S3 can
use both routes to send their traffic, which allow them to
compete with user S4 for link 3. User 54 still maintains a
slightly advantage, but now the difference between its over-
all throughput and the overall throughputs of the other users
is less than 7%. In the case of the in-profile traffic this dif-
ference is about 5%. As in the previous experiment the rea-

son for this difference is because when competing with 54,
the other users have to pay, besides link 3, for link 2 as well.

Thus, by taking advantage of the alternate routes, our
scheme is able to achieve fairness in a more general setting.
At the same time it is worth noting that the overall through-
put also increases by almost 7 %. However, in this case,
this is mainly due to the bursty nature of S4’s traffic which
cannot use the entire capacity of link 3 when it is the only
one to use it, rather than load balancing.

34 Load Distribution and L oad Balancing

This experiment shows how the load distribution affects
the effectiveness of our load balancing scheme. For this
purpose, consider the topology in Figure 6(a). In the first
simulation we generate flows that have the source and the
destination uniformly distributed among users. Figure 6(b)
shows the means of the overall throughputs under BASE,
STATIC, and DYNAMIC-2, respectively ©. Due to the uni-
formity of the traffic pattern, in this case BASE performs
very well. Under STATIC we get slightly larger overall
throughput, mainly due to our congestion control scheme,
which admits a marked packet only if there is a high prob-
ability to be delivered. However, under DYNAMIC-2 the
performances degrades. This is because there are times
when our probabilistic routing algorithm selects longer
routes, which leads to inefficient resource utilization.

Next, we consider an unbalanced load by making users
S3 and S4 inactive. Figure 6(c) shows throughput means
under BASE, STATIC, and DYNAMIC-2, respectively. As
it can be noticed, using DYNAMIC-2 increases the mean by
30 %. This is because under BASE and STATIC schemes

SWe have also computed standard deviations for each case: the largest

standard deviation was 0.342 for the overall throughput under STATIC
scheme, and 0.4 for the in-profile throughput under DYNAMIC-2.
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Figure 7. Topology similar to the T3 topology of the NSFNET backbone network containing the IBM

NSS nodes.

the entire traffic between S1, S2 and S5, S6 is routed
through links 3 and 4 only. On the other hand, DYNAMIC-
2 takes advantage on the alternate route through links 1 and
2.

Finally, in another simulation not shown here we con-
sidered the scenario in which S5, S6, S7, and S8 send
their entire traffic to S3 and S4, respectively. In this case
DYNAMIC-2 outperforms almost two times STATIC and
BASE both in terms of in-profile and overall throughputs.
This is again because BASE and STATIC use exclusively
links 3 and 2, while DYNAMIC-2 uses the other two links
as well.

3.5 Large Scale Example

In this section we consider a larger topology that closely
resembles the T3 topology of the NSFNET backbone con-
taining the IBM NSS nodes (see Figure 7). The major dif-
ference is that in order to limit the simulation time we as-
sume 10 Mbps links, instead of 45 Mbps. We consider the
following three scenarios.

In the first scenario we assume that load is uniformly
distributed, i.e., any two users communicate with the same
probability. Figure 8(a) shows the results for each scheme,
results which are consistent with the ones obtained in the
previous experiment. Due to the congestion control which
reduces the number of dropped packets in the network,
STATIC achieves higher throughput than BASE. On the
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other hand, the dynamic routing and load balancing are not
effective in this case, since they tend to generate longer
routes which leads to inefficient resource utilization. This is
illustrated by the decrease of the overall and the in-profile
throughputs under DY NAMIC-2 and DY NAMIC-3, respec-
tively.

In the second scenario we assume unbalanced load.
More precisely, we consider 11 users (covered by the
shaded area in Figure 7(b)) which are nine times more active
than the other, i.e., they send/receive nine times more traffic
than the others.” Unlike the previous scenario, in terms of
overall throughputs DYNAMIC-2 outperforms STATIC by
almost 8 %, and BASE by almost 20 % (see Figure 8(b)).
This is because DYNAMIC-2 is able to use some of the
idle links from the un-shaded partition. However, as shown
by the results for DYNAMIC-3, as the number of alternate
paths increases both the overall and in-profile throughputs
start to decrease.

In the last scenario we consider the partition of the net-
work shown in Figure 7(c). For simplicity, we assume
that only users in the same partition communicate between
them. This scenario models a virtual private network (VPN)
setting, where each partition corresponds to a VPN. Again,
DYNAMIC-2 performs the best8, since it is able to make

7This might model the real situation where the east coast is more active
between 9 and 12 a.m. EST, than the west coast.
8 The mean of the user overall throughput under DYNAMIC-2 is 15 %
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Figure 8. The throughputs when the load is balanced (Figure 7(a)), (b) unbalanced ((Figure 7(b)), and
(c) when the network is virtually partitions (Figure 7(c)).

use of some links between partitions that otherwise would
remain idle.

Finally, we note that across all simulations presented in
this section the dropping rate for the marked packets was
never larger than 0.3 %. At the same time the dropping rate
for the unmarked packets was over 40 %.

3.6 Summary of Results

Although the experiments in this section are far from be-
ing exhaustive, we believe that they give a reasonable image
of how our scheme performs. First, our scheme is effec-
tive in providing service differentiations at the user level.
Specifically, the first two experiments show that users with
similar communication patterns get service in proportion to
their token rates. Second, at least for the topologies and the
traffic model considered in these experiments, our scheme
ensures that marked packets are delivered to the destination
with high probability.

Consistent with other studies [19], these experiments
show that performing dynamic routing and load balancing
make little sense when the load is already balanced. In
fact, doing dynamic routing and load balancing can actually
hurt, since, as noted above, this will generate longer routes
which may result in inefficient resource utilization. How-
ever, when the load is unbalanced, using DYNAMIC-£ can
significantly increase the utilization and achieve a higher
degree of fairness.

Finally, we note that the in-profile dropping rate de-
creases as the the number of alternate paths increases. For
example in the last experiment in the first two scenarios the
dropping rate is no larger than 0.3 % under STATIC and 0
under DYNAMIC-2 and DYNAMIC-3, respectively, while

larger than under STATIC, and 18 % larger than under BASE.
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in the last scenario the percentage decreases from 0.129 %
for STATIC, to 0.101 % for DYNAMIC-2, and to 0.054 %
for DYNAMIC-3.

4 Discussion

In this paper, we have studied a differential service
model, called LIRA, in which the service profile is specified
in terms of resource tokens instead of absolute bandwidth.
Since the exact bandwidth of marked bits that a customer
can receive from such a service is not known a priori, a nat-
ural question to ask is why such a service model is interest-
ing.

There are several reasons. First, we believe that the apri-
ori specification of an absolute amount of bandwidth in the
service profile, though desirable, is not essential. In par-
ticular, we believe that the essential aspects that distinguish
Diffserv from Intserv are the followings: () the service pro-
file is used for traffic aggregate much coarser than per flow
traffic, and (b) the service profile is defined over a timescale
larger than the duration of individual flows, i.e. service pro-
file is rather static. Notice that the degree of traffic aggre-
gation directly relates to the spatial granularity of the ser-
vice profile. On the one hand, if each service profile is
defined for only one destination, we have the smallest de-
gree of traffic aggregation. If there are N possible egress
nodes for a user, N independent service profiles need to be
defined. Network provisioning is relatively easy as the en-
tire traffic matrix between all egress and ingress nodes is
known. However, if a user has a rather dynamic distribu-
tion of egress nodes for its traffic, i.e., the amount of traffic
destined to each egress node varies significantly, and the
number of possible egress nodes is large, such a scheme
will significantly reduce the chance of statistical sharing.
On the other hand, if each service profile is defined for all



egress nodes, we have the largest degree of traffic aggrega-
tion. Only one service profile is needed for each user re-
gardless the number of possible egress nodes. In addition to
a smaller number of service profiles, such a service model
also allows all the traffic from the same user, regardless of
its destinations, to statistically share the same service pro-
file. The flip side is that it makes it difficult to provision
network resources. Since the traffic matrix is not known
apriori, the best-case scenario is when the network traffic is
evenly distributed, and the worst-case scenario is when all
traffic goes to the same egress router.

Therefore, it is very difficult, if not impossible, to design
service profiles that (1) are static, (2) support coarse spatial
granularity, (3) are defined in terms of absolute bandwidth,
and at the same time achieve (4) high service assurance and
(5) high resource utilization. Since we feel that (1), (2), (4)
and (5) are the most important for differential services, we
decide to give up (3).

Fundamentally, we want a service profile that is static
and egress node/path independent. However, to achieve
high utilization, we need to explicitly address the fact that
congestion is a local and dynamic phenomenon. Our so-
lution is to have two levels of differentiation: (a) the user
or service-profile level differentiation, which is based on
resource token arrival rate. This is static and path inde-
pendent; (b) the packet level differentiation, which is a
simple priority between marked and unmarked packets and
weighted fair share among marked packets. By dynamically
setting the cost of each marked bit as a function of the con-
gestion level of the path it traverses, we set up the linkage
between the static/path-independent and the dynamic/path-
dependent components of the service model.

A second reason for which our service model may be ac-
ceptable is that users may care more about the differential
aspect of the service than the guaranteed bandwidth. For
example, if user A pays twice as much as user B, user A
would expect to have roughly twice as much traffic deliv-
ered as user B during congestion if they share same con-
gested links, which is exactly what we accomplish in LIRA.

A third reason for which a fixed-resource-token-rate-
variable-bandwidth service profile may be acceptable is
that the user traffic is usually bursty over multiple time-
scales[5, 23, 30]. Thus, there is a fundamental mismatch
between an absolute bandwidth profile and the bursty na-
ture of the traffic®.

We do recognize the fact that it is desirable for both the
user and the ISP to understand the relationship between the
user’s resource token rate and its expected capacity. This
can be achieved by measuring the rate of marked bits given

9 Some recent measurements show that the aggregate traffic over Inter-
net backbone links are not very bursty. We note that this is not inconsistent
with the observations that the aggregate traffic from a campus to the Inter-
net exhibits long range dependency.
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a fixed token rate. Both the user and the ISP can perform
this measurement. In fact, this suggests two possible sce-
narios in which LIRA can be used to provide a differential
service with an expected capacity defined in terms of ab-
solute bandwidth. In the first scenario, the service is not
transparent. Initially, the ISP will provide the user with the
following relationship

expected_capacity = f(token_rate,traf ficomiz) (7)
based on its own prior measurement. The user will measure
the expected capacity and then make adjustments by asking
for an increase or a decrease in its resource token rate. In
the second scenario, the service is transparent. Both the
initial setting and the subsequent adjustments of the service
profile in terms of number of token rate will be made by the
ISP only.

Therefore, one way of thinking about our scheme is that
it provides a flexible and efficient framework for imple-
menting a variety of Assured Services. In addition, the
dynamic link cost information and the statistics of the re-
source token bucket history provide good feedback both for
individual applications to perform runtime adaptation, and
for the user or the ISP to do proper accounting and provi-
sioning.

5 Redated Work

Our work is highly influenced by Clark and Wro-
clawski’s Assured Service proposal [3, 4]. The key differ-
ence is that we define service profiles in units of resource
tokens rather than absolute bandwidth. In addition, we pro-
pose a resource accounting scheme and an integrated set of
algorithms to implement our service model.

Another related proposal is the User-Share Differentia-
tion (USD) [29] scheme, which does not assume absolute
bandwidth profiles either. In fact, with USD, a user is as-
signed a share rather than a token-bucket-based service pro-
file. For each congested link in the network traversed by the
user’s traffic, the user shares the bandwidth with other users
in proportion to its share. The service provided is equiva-
lent to one in which each link in a network implements a
weighted fair queueing scheduler where the weight is the
user’s share. With USD, there is little correlation between
the share of a user and the aggregate throughput it will re-
ceive. For example, two users that are assigned the same
share can see drastically different aggregate throughputs.
A user that has traffic for many destinations (thus traverse
many different paths) can potentially receive much higher
aggregate throughput than a user that has traffic for only a
few destinations.

There is a huge body of related work that addresses the
resource allocation problem both for single and multiple re-
sources. However, to the best of our knowledge, none of



the existing proposals address the problem of allocating re-
sources for traffic aggregate that has a large spatial gran-
ularity. In general, they are limited in scope to allocating
resources along individual paths only. In addition, these
schemes usually require each user to maintain per resource
state, or/and each resource to maintain per user state. In the
following, we discuss several of the more relevant schemes.

Waldspurger and Weihl have proposed a framework for
resource management based on lottery tickets [27, 28].
Each client is associated a certain number of tickets which
encapsulate its resource rights. The number of tickets a user
receives is similar to the user’s income rate in LIRA. This
framework was shown to provide flexible management for
various single resources, such as disk, memory and CPU.
However, they do not give any algorithm(s) to coordinate
tickets allocation among multiple resources.

Ferguson et al. proposed a flow control economy to al-
locate network resources such as links and buffers among
competing virtual circuits (VCs) [7, 8]. In this model, each
VC is endowed certain funds for buying resources. The
VC’s goal is to buy a minimum capacity on all links along
its path, and use the extra money to minimize the average
end-to-end delay. The resource prices are set so that the
supply and the demand are balanced. It has been shown
that such economy converges and the resulted allocations
are pareto-optimal.

MacKie-Mason and Varian have proposed a model,
called “smart markets”, in which each packet carries a bid
that represents how much the user is willing to pay for
it [20]. At each congested link along a path a cutoff price
is computed and only packets that have a higher bid are for-
warded; the other packets are buffered. At the service level
it is unclear how the priorities of individual packets trans-
late into expected network throughput. In addition, in order
to achieve high level of service assurance, a user needs to
know the smallest bid along the path. No mechanisms are
given to propagate this information to the users.

Awerbuch et al. [1] have proposed an on-line reserva-
tion algorithm to maximize the throughput in a network
where the duration of each reservation is known in ad-
vance. The algorithm guarantees that the throughput is
within O(log nT") factor of the throughput achieved by an
optimal off-line algorithm, where n is the number of nodes
and 7' is the maximum duration of a reservation. In the
scheme, each link is associated with a cost that is a expo-
nential function of its current utilization. Also, each con-
nection is associated with a profit which is received only
if the request is granted. The goal of the algorithm is then
to maximize the overall profit. While this algorithm differs
significantly form ours both in assumptions and goals, we
note that the mechanisms used to implement LIRA can also
be used to implement this scheme.

Kelly et. al [15, 16] have considered the problem of
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bandwidth allocation between competing streams with elas-
tic traffic. In particular, they propose a mathematical model
to analyze the stability and fairness of a class of rate con-
trolled algorithms. In this model each user chose the charge
per unit of time that it is willing to pay for a route. In turn
the network computes the user rates according to a propor-
tionate criterion. However, they only consider the model
where resources are allocated on the basis of per virtual cir-
cuit.

To increase resource utilization, in this paper we propose
performing dynamic routing and load balancing among the
best % shortest paths between source and destination. In
this context, one of the first dynamic routing algorithms,
which uses the link delay as metric, was the ARPANET
shortest path first [21]. Unfortunately, the sensitivity of
this metric when the link utilization approaches unity re-
sulted to relative poor performances. Various routing algo-
rithms based on congestion control information were pro-
posed elsewhere [12, 13]. The unique aspect of our algo-
rithm is that it combines dynamic routing, congestion con-
trol and load balancing together. Also we alleviate the prob-
lem of system stability which plagued many of the previous
dynamic routing algorithms by defining a more robust cost
function and probabilistically binding a flow to a route. We
also note that our link cost is similar to the one used in [19].
In particular, it can be shown that when all links have the
same capacity, our link cost is within a constant factor of
the cost of shortest-dist(P, 1) algorithm presented in [19].
It is worth noting that shortest-dist(P, 1) performed the best
among all the algorithms studied in [19].

6 Summary

We study models and algorithms that support Assured
Service with service profiles defined over large spatial gran-
ularities. We propose a service model in which the service-
profile is defined in units of resource tokens rather than the
absolute bandwidth, and an accounting scheme that dynam-
ically determines the number of resource tokens charged for
each in-profile packet. We present a set of algorithms that
efficiently implement the service model. In particular, we
introduce three techniques: (a) distributing path costs to all
edge nodes by leveraging existing routing infrastructure; (b)
binding a flow to a route (route-pinning) without maintain-
ing per flow state; (c) multi-path routing and probabilistic
binding of flows to paths to achieve load balancing. Simu-
lation results are presented to demonstrate the effectiveness
of the approach. To the best of our knowledge, this is the
first complete scheme that explicitly addresses the issue of
large spatial granularities.

While these techniques are developed in the context of
supporting Assured Service, they may be useful in other
contexts. For example, by combining the route-pinning
technique with the SCED+ algorithm proposed in [6], guar-



anteed or premium service can be provided without the need
for per flow management at core routers.

As future work, we plan to extend this work to support
multiple ISP environments, multicast communication, and
both sender and receiver-based charging schemes.
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